prim算法时间复杂度
A. 和Kruskal求最小生成树的时间各为多少
设无向联通图的顶点n个,边数e
Prim算法时间复杂度为O(n^2)
Kruskal算法时间复杂度是O(e*log2(e))
B. 利用Prim(普里姆)算法 构造最小生成树 程序
算法同样是解决最小生成树的问题。
其算法为:在这n个点中的相通的边进行排序,然后不断地将边添加到集合中(体现了贪心的算法特点),在并入集合之前,必须检查一下这两点是不是在一个集合当中,这就用到了并查集的知识。直到边的集合达到了n-1个。
与prim算法的不同:prim算法为单源不断寻找连接的最短边,向外扩展,即单树形成森林。而Kruskal算法则是不断寻找最短边然后不断将集合合并,即多树形成森林。
复杂度的不同:prim算法的复杂度是O(n^2),其中n为点的个数。Kruskal算法的复杂度是O(e*loge),其中e为边的个数。两者各有优劣,在不同的情况下选择不同的算法。
Prim算法用于求无向图的最小生成树
设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)
Prim算法实现:
(1)集合:设置一个数组set(i=0,1,..,n-1),初始值为 0,代表对应顶点不在集合中(注意:顶点号与下标号差1)
(2)图用邻接阵表示,路径不通用无穷大表示,在计算机中可用一个大整数代替。
{先选定一个点,然后从该点出发,与该点相连的点取权值最小者归入集合,然后再比较在集合中的两点与其它各点的边的权值最小者,再次进入集合,一直到将所有的点都归入集合为止。}
C. prim算法与kruskal算法时间复杂度哪个小
令到图中所有节点都连通的最小代价.就是最小生成树
简单点说
有几个城市
你要设计一个路线 这个路线能走完所有的这几个城市 而且路程最短
这个路线就是最小生成树的含义
D. Prim和Dijkstra算法的区别
在图论中,Prim算法是计算最小生成树的算法,而Dijkstra算法是计算最短路径的算法。二者看起来比较类似,因为假设全部顶点的集合是V,已经被挑选出来的点的集合是U,那么二者都是从集合V-U中不断的挑选权值最低的点加入U。
二者的不同之处在于“权值最低”的定义不同,Prim的“权值最低”是相对于U中的任意一点而言的,也就是把U中的点看成一个整体,每次寻找V-U中跟U的距离最小(也就是跟U中任意一点的距离最小)的一点加入U;而Dijkstra的“权值最低”是相对于v0而言的,也就是每次寻找V-U中跟v0的距离最小的一点加入U。
一个可以说明二者不等价的例子是有四个顶点(v0, v1, v2, v3)和四条边且边值定义为(v0, v1)=20, (v0, v2)=10, (v1, v3)=2, (v3, v2)=15的图,用Prim算法得到的最小生成树中v0跟v1是不直接相连的,也就是在最小生成树中v0v1的距离是v0->v2->v3->v1的距离是27,而用Dijkstra算法得到的v0v1的距离是20,也就是二者直接连线的长度。
E. 最小生成树两种算法有何区别
主要有两个:
1.普里姆(Prim)算法
特点:时间复杂度为O(n2).适合于求边稠密的最小生成树。
2.克鲁斯卡尔(Kruskal)算法
特点:时间复杂度为O(eloge)(e为网中边数),适合于求稀疏的网的最小生成树。
F. 数据结构 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为( ),利用K
O(n^2), O(elog2e)
求这两个结果的过程任何一本比较全面的数据结构教科书上都有的
G. 什么是Prim算法
Prim算法
Prim算法用于求无向图的最小生成树
设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)
Prim算法实现:
(1)集合:设置一个数组set[i](i=0,1,..,n-1),初始值为 0,代表对应顶点不在集合中(注意:顶点号与下标号差1)
(2)图用邻接阵表示,路径不通用无穷大表示,在计算机中可用一个大整数代替。
参考程序
/* Prim.c
Copyright (c) 2002, 2006 by ctu_85
All Rights Reserved.
*/
/* The impact of the situation of articulation point exists can be omitted in Prim algorithm but not in Kruskal algorithm */
#include "stdio.h"
#define maxver 10
#define maxright 100
int main()
{
int G[maxver][maxver],in[maxver]=,path[maxver][2];
int i,j,k,min=maxright;
int v1,v2,num,temp,status=0,start=0;
restart:
printf("Please enter the number of vertex(s) in the graph:\n");
scanf("%d",&num);
if(num>maxver||num<0)
{
printf("Error!Please reinput!\n");
goto restart;
}
for(j=0;j<num;j++)
for(k=0;k<num;k++)
{
if(j==k)
G[j][k]=maxright;
else
if(j<k)
{
re:
printf("Please input the right between vertex %d and vertex %d,if no edge exists please input -1:\n",j+1,k+1);
scanf("%d",&temp);
if(temp>=maxright||temp<-1)
{
printf("Invalid input!\n");
goto re;
}
if(temp==-1)
temp=maxright;
G[j][k]=G[k][j]=temp;
}
}
for(j=0;j<num;j++)
{
status=0;
for(k=0;k<num;k++)
if(G[j][k]<maxright)
{
status=1;
break;
}
if(status==0)
break;
}
do
{
printf("Please enter the vertex where Prim algorithm starts:");
scanf("%d",&start);
}while(start<0||start>num);
in[start-1]=1;
for(i=0;i<num-1&&status;i++)
{
for(j=0;j<num;j++)
for(k=0;k<num;k++)
if(G[j][k]<min&&in[j]&&(!in[k]))
{
v1=j;
v2=k;
min=G[j][k];
}
if(!in[v2])
{
path[i][0]=v1;
path[i][1]=v2;
in[v1]=1;
in[v2]=1;
min=maxright;
}
}
if(!status)
printf("We cannot deal with it because the graph is not connected!\n");
else
{
for(i=0;i<num-1;i++)
printf("Path %d:vertex %d to vertex %d\n",i+1,path[i][0]+1,path[i][1]+1);
}
return 1;
}
Prim算法。
设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)
参考程序
//Prim 算法 读入顶点数(n)、边数(m),边的起始点和权值 用邻接矩阵储存
//例如
//7 12 (7个顶点12条边)
//1 2 2
//1 4 1
//1 3 4
//2 4 3
//2 5 10
//3 4 2
//4 5 7
//3 6 5
//4 6 8
//4 7 4
//5 7 6
//6 7 1
#include <stdio.h>
#include <string.h>
int main()
{
int m , n;
int a[201][201] , mark[201] , pre[201] , dist[201];
int s , t , w;
int i , j , k , min , tot;
freopen("Prim.txt" , "r" , stdin);
//读入数据
memset(a , 0 , sizeof(a));
scanf("%d %d" , &n , &m);
for (i = 0; i < m; i ++)
{
scanf("%d %d %d" , &s , &t , &w);
a[s][t] = w; a[t][s] = w;
}
//赋初值
memset(mark , 0 , sizeof(mark));
memset(pre , 0 , sizeof(pre));
memset(dist , 9999 , sizeof(dist));
dist[1] = 0;
//Prim
for (i = 1; i <= n; i ++)
{
min = 9999; k = 0;
for (j = 1; j <= n; j ++)
if ((mark[j] == 0) && (dist[j] < min)) {min = dist[j]; k = j;}
if (k == 0) break;
mark[k] = 1;
for (j = 1; j <= n; j ++)
if ((mark[j] == 0) && (a[k][j] < dist[j]) && (a[k][j] > 0))
{
dist[j] = a[k][j];
pre[j] = k;
}
}
tot = 0;
for (i = 1; i <= n; i ++) tot += dist[i];
printf("%d\n" , tot);
return 0;
}
H. 在图采用邻接表存储时prim算法的时间复杂度
邻接表储存时,是B.邻接矩阵储存就是C了.
I. prim算法 复杂度
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
时间复杂度
这里记顶点数v,边数e
邻接矩阵:O(v2) 邻接表:O(elog2v)
J. 采用邻接表存储,Prim算法的时间复杂度是多少
设连同网中有n个定点,第一个进行初始化循环语句需要执行n-1次,第二个循环共执行n-1次,内嵌两个循环,其一是在长度为n的数组中求最小值,需要执行n-1次,其二是条用辅助数组,需要执行n-1次。所以Prim算法的复杂度是n*n