linux内存空间
A. linux用户空间内存分配原则
在用户空间中动态申请内存的函数为malloc (),这个函数在各种操作系统上的使用都是一致的,malloc ()申请的内存的释放函数为free()。对于Linux而言,C库的malloc ()函数一般通过brk ()和mmap ()两个系统调用从内核申请内存。由于用户空间C库的malloc算法实际上具备一个二次管理能力,所以并不是每次申请和释放内存都一定伴随着对内核的系统调用。如,应用程序可以从内核拿到内存后,立即调用free(),由于free()之前调用了mallopt(M_TRIM_THRESHOLD,一1)和mallopt (M_MMAP_MAX,0),这个free ()并不会把内存还给内核,而只是还给了C库的分配算法(内存仍然属于这个进程),因此之后所有的动态内存申请和释放都在用户态下进行。另外,Linux内核总是采用按需调页(Demand Paging),因此当malloc ()返回的时候,虽然是成功返回,但是内核并没有真正给这个进程内存,这个时候如果去读申请的内存,内容全部是0,这个页面的映射是只读的。只有当写到某个页面的时候,内核才在页错误后,真正把这个页面给这个进程。在Linux内核空间中申请内存涉及的函数主要包括kmalloc( ) 、get free pages ( )和vmalloc ()等。kmalloc ()和_get_free pages ()(及其类似函数)申请的内存位于DMA和常规区域的映射区,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系。而vmalloc()在虚拟内存空间给出一块连续的内存区,实质上,这片连续的虚拟内存在物理内存中并不一定连续,而vmalloc ()申请的虚拟内存和物理内存之间也没有简单的换算关系。
B. linux查看服务器内存大小
怎么查看linux服务器的内存?我们一起来了解一下吧。1、cat/proc/meminfo查看linux系统内存大小的详细信息,可以查看总内存,剩余内存、可使用内存等信息。
本文章基于ThinkpadE15品牌、centos7系统撰写的。
C. Linux进程内存管理
对于包含MMU的处理器而言,Linux系统提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。在Linux系统中,进程的4GB内存空间被分为两个部分——用户空间与内核空间。用户空间的地址一般分布为0~3GB(即PAGE_OFFSET,在Ox86中它等于OxC0000000),这样,剩下的3~4GB为内核空间,用户进程通常只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。用户进程只有通过系统调用(代表用户进程在内核态执行)等方式才可以访问到内核空间。
每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表。而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。内核空间的虚拟地址到物理地址映射是被所有进程共享的,内核的虚拟空间独立于其他程序。
Linux中1GB的内核地址空间又被划分为物理内存映射区、虚拟内存分配区、高端页面映射区、专用页面映射区和系统保留映射区这几个区域。
对于x86系统而言,一般情况下,物理内存映射区最大长度为896MB,系统的物理内存被顺序映射在内核空间的这个区域中。当系统物理内存大于896MB时,超过物理内存映射区的那部分内存称为高端内存(而未超过物理内存映射区的内存通常被称为常规内存),内核在存取高端内存时必须将它们映射到高端页面映射区。Linux保留内核空间最顶部FIXADDR_TOP~4GB的区域作为保留区。
当系统物理内存超过4GB时,必须使用CPU的扩展分页(PAE)模式所提供的64位页目录项才能存取到4GB以上的物理内存,这需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以后的CPU允许内存最大可配置到64GB,它们具备36位物理地址空间寻址能力。
由此可见,对于32位的x86而言,在3~4GB之间的内核空间中,从低地址到高地址依次为:物理内存映射区→隔离带→vmalloc虚拟内存分配器区→隔离带→高端内存映射区→专用页面映射区→保留区。
D. Linux用户空间内存是怎么动态申请
用户空间中动态申请内存的函数为malloc (),这个函数在各种操作系统上的使用都是一致的,malloc ()申请的内存的释放函数为free()。对于Linux而言,C库的malloc ()函数一般通过brk ()和mmap ()两个系统调用从内核申请内存。由于用户空间C库的malloc算法实际上具备一个二次管理能力,所以并不是每次申请和释放内存都一定伴随着对内核的系统调用。比如,代码清单11.2的应用程序可以从内核拿到内存后,立即调用free(),由于free()之前调用了mallopt(M_TRIM_THRESHOLD,一1)和mallopt (M_MMAP_MAX,0),这个free ()并不会把内存还给内核,而只是还给了C库的分配算法(内存仍然属于这个进程),因此之后所有的动态内存申请和释放都在用户态下进行。另外,Linux内核总是采用按需调页(Demand Paging),因此当malloc ()返回的时候,虽然是成功返回,但是内核并没有真正给这个进程内存,这个时候如果去读申请的内存,内容全部是0,这个页面的映射是只读的。只有当写到某个页面的时候,内核才在页错误后,真正把这个页面给这个进程。
在Linux内核空间中申请内存涉及的函数主要包括kmalloc( ) 、get free pages ( )和vmalloc ()
等。kmalloc ()和_get_free pages ()(及其类似函数)申请的内存位于DMA和常规区域的映射区,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系。而vmalloc()在虚拟内存空间给出一块连续的内存区,实质上,这片连续的虚拟内存在物理内存中并不一定连续,而vmalloc ()申请的虚拟内存和物理内存之间也没有简单的换算关系。
E. Linux内核空间内存动态申请
在Linux内核空间中申请内存涉及的函数主要包括kmalloc () 、_get_free _pages ()和vmalloc(等。kmalloc()和_get_free pages ()(及其类似函数)申请的内存位于DMA和常规区域的映射区,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系。而vmalloc()在虚拟内存空间给出一块连续的内存区,实质上,这片连续的虚拟内存在物理内存中并不一定连续,而vmalloc ()申请的虚拟内存和物理内存之间也没有简单的换算关系。
1.kmalloc ( )
给kmalloc() 的第一个参数是要分配的块的大小;第二个参数为分配标志,用于控制kmalloc ()的行为。最常用的分配标志是GFP_KERNEL,其含义是在内核空间的进程中申请内存。kmalloc ()的底层依赖于_get_free pages ()来实现,分配标志的前缀GFP正好是这个底层函数的缩写。使用GFP_KERNEL标志申请内存时,若暂时不能满足,则进程会睡眠等待页,即会引起阻塞,因此不能在中断上下文或持有自旋锁的时候使用GFP_KERNE申请内存。由于在中断处理函数、tasklet和内核定时器等非进程上下文中不能阻塞,所以此时驱动应当使用GFP_ATOMIC标志来申请内存。当使用GFP_ATOMIC标志申请内存时,若不存在空闲页,则不等待,直接返回。
其他的申请标志还包括GFP_USER(用来为用户空间页分配内存,可能阻塞)、GFP_HIGHUSER(类似GFP_USER,但是它从高端内存分配)、GFP_DMA(从DMA区域分配内存)、GFP_NOIO(不允许任何IO初始化)、GFP_NOFS(不允许进行任何文件系统调用)、__GFP_ HIGHMEM(指示分配的内存可以位于高端内存)、__(GFP COLD(请求一个较长时间不访问的页)、_GFP_NOWARN(当一个分配无法满足时,阻止内核发出警告)、_GFP_HIGH(高优先级请求,允许获得被内核保留给紧急状况使用的最后的内存页)、GFP_REPEAT(分配失败,则尽力重复尝试)、_GFP_NOFAIL(标志只许申请成功,不推荐)和__GFPNORETRY(若申请不到,则立即放弃)等。
使用kmalloc()申请的内存应使用kfree()释放,这个函数的用法和用户空间的free()类似。
2._get_free_pages ()
_get_free pages ()系列函数/宏本质上是Linux内核最底层用于获取空闲内存的方法,因为底层的buddy算法以2n页为单位管理空闲内存,所以最底层的内存申请总是以2n页为单位的。
get_free _pages ()系列函数/宏包括get_zeroed _page () 、_get_free_page ()和get_free pages () 。
__get_free_pages(unsigned int flags, unsigned int order) 该函数可分配多个页并返回分配内存的首地址,分配的页数为2order,分配的页也不清零。order允许的最大值是10(即1024页)或者11(即2048页),这取决于具体的硬件平台。
F. Linux内核中如何申请和释放内存
申请内存:
void *kmalloc(size_t size, int flags)
kmalloc函数和malloc函数相似,它有两个参数,一个参数是size,即申请内存块的大小,这个参数比较简单,就像malloc中的参数一样。第二个参数是一个标志,在里面可以指定优先权之类的信息。在Linux中,有以下的一些优先权:
GFP_KERNEL,它的意思是该内存分配是由运行在内核模式的进程调用的,即当内存低于min_free_pages的时候可以让该进程进入睡眠;
GFP_ATOMIC,原子性的内存分配允许在实际内存低于min_free_pages时继续分配内存给进程。
GFP_DMA:此标志位需要和GFP_KERNEL、GFP_ATOMIC等一起使用,用来申请用于直接内存访问的内存页。
释放:
Kfree(const void *objp) const void *objp=为需要释放的内存空间指针
G. linux 需要多少内存
一般6-10g,建议20g以上。
由于linux的内核的来源是一样的,
但由于发行版本不同,
具体需要磁盘大小看具体系统需求。
linux内核比较小,
安装系统其实用不了多大的磁盘空间,
不像max
os
和windows
。为了获得完整的用户体验,
建议磁盘空间保证在20g以上,
如果需要安装很多软件和服务,
那么自然就要扩大磁盘容量了。
当然也可以在系统装好之后扩充磁盘容量,
但为了避免麻烦和数据损失,
建议在安装时多分一点儿空间。
H. linux查看内存使用情况
linux查看内存使用情况的方法是,1,proc。meminfo,查看 RAM 使用情况最简单的方法是通过 ,procmeminfo。这个动态更新的虚拟文件实际上是许多其他内存相关工具 free ,ps ,top的组合显示。
2,atop。atop 命令是一个终端环境的监控命令。它显示的是各种系统资源,CPU, memory, network, IOkernel的综合,并且在高负载的情况下进行了彩色标注。
3,free。free 命令是一个快速查看内存使用情况的方法,它是对 ,proc,meminfo 收集到的信息的一个概述。
4,GNOME System Monitor。GNOME System Monitor 是一个显示最近一段时间内的 CPU内存交换区及网络的使用情况的视图工具。它还提供了一种查看 CPU 及内存使用情况的方法。
5,htop。htop 命令显示了每个进程的内存实时使用率。它提供了所有进程的常驻内存大小,程序总内存大小,共享库大小等的报告,列表可以水平及垂直滚动。6,KDE System Monitor功能同 4 中介绍的 GENOME 版本。
I. linux进程内存空间分为哪几个阶段
人力床的空间的话,换回了六个阶段,感觉这个阶段比较好
J. 如何手动释放Linux内存的方法
1、首先打开Linux命令窗口,可使用快捷键Ctrl+Alt+T打开。