当前位置:首页 » 操作系统 » 算法背包问题

算法背包问题

发布时间: 2022-06-19 21:19:44

㈠ 用贪心算法解决背包问题

用贪心算法解决背包问题,首先要明白,结果不一定是全局最优的。对于贪心法而言,首先步骤是找到最优度量标准,我这里的算法采用的最优度量标准是: 收益p/重量w 的值最大者优先放入背包中,所以有算法如下:void GreedyKnapsack(float * x){ //前置条件:w[i]已按p[i]/w[i]的非增次序排列 float u=m; //u为背包剩余载重量,初始时为m for(int i=0;i<n;i++) x[i]=0; //对解向量x初始化 for(i=0;i<n;i++){ //按最优度量标准选择的分量 if(w[i]>u) break; x[i]=1.0; u=u-w[i]; } if(i<n) x[i]=u/w[i];}

㈡ 求背包问题贪心算法实例结果

找零钱问题:以人民币1元,2元,5元,10元,20元,50元,100元为例,要求所找的张数最少
背包问题:假设物体重量W1,W2...Wn其对应的价值为P1,P2...Pn,物体可分割,求装入重量限制为m的背包中的物体价值最大.可用P/W来解答.
#include<iostream>
#include<algorithm>
using namespace std;
struct good//表示物品的结构体
{
double p;//价值
double w;//重量
double r;//价值与重量的比
}a[2000];
double s,value,m;
int i,n;
bool bigger(good a,good b)
{
return a.r>b.r;
}
int main()
{
scanf("%d",&n);//物品个数
for (i=0;i<n;i++)
{
scanf("%lf%lf",&a[i].w,&a[i].p);
a[i].r=a[i].p/a[i].w;
}
sort(a,a+n,bigger);//调用sort排序函数,你大概不介意吧,按照价值与重量比排序贪心
scanf("%lf",&m);//读入包的容量m
s=0;//包内现存货品的重量
value=0;//包内现存货品总价值
for (i=0;i<n&&s+a[i].w<=m;i++)
{
value+=a[i].p;
s+=a[i].w;
}
printf("The total value in the bag is %.2lf.\n",value);//输出结果
return 0;
}

㈢ C语言 背包问题 递归算法

if(n==0)应该改成

if(n<0)才对,表示没有物品可选了。我的一个改进,但输出选择项还是有问题!

#include<stdio.h>
#include<conio.h>
#defineN3
intMaxW(intn,intC,int*Volume,int*Weight,int*Select){
intW=0,W1=0;
if(n<0){//没有物品了
return0;
}
W=MaxW(n-1,C,Volume,Weight,Select);//没放入n之前的重量
if(C>=Volume[n]){//背包剩余空间可以放下物品n
W1=MaxW(n-1,C-Volume[n],Volume,Weight,Select)+Weight[n];//放入n所能得到的重量
Select[n]=0;
if(W1>W){//放入n能获得更大的重量
Select[n]=1;
W=W1;
}
}
returnW;
}

intmain(){
intC=8,W,i;
//intVolume[N]={1,2,3,4,5};//物品体积
//intWeight[N]={1,2,5,7,8};//物品重量
intVolume[N]={2,3,5};//物品体积
intWeight[N]={5,8,7};//物品重量
intSelect[N]={0};//选择标记
W=MaxW(N-1,C,Volume,Weight,Select);
printf("MaxWeight=%d,SelectList[index(volume,weight)]: ",W);
for(i=0;i<N;++i){
if(Select[i]){
printf("%d(%d,%d)",i,Volume[i],Weight[i]);
}
}
printf(" Finished! ");
getch();
return0;
}

其中的Select数组还是会多选了,你看看。

㈣ 背包问题的算法

1)登上算法
用登山算法求解背包问题 function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');

时间复杂度是非指数的

2)递归法
先看完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n
可使用递归法解决问题程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
说明:当m不大时,编程很简单,但当m较大时,容易超时.
4.2 改进的递归法
改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个
一维数组即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)贪婪算法
改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。

代码思路:从最大的元素开始遍历超递增序列中的每个元素,若背包还有大于或等于当前元素值的空间,则放入,然后继续判断下一个元素;若背包剩余空间小于当前元素值,则判断下一个元素
简单模拟如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*产生超递增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*输出当前的超递增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包问题求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍历超递增序列中的每个元素*/
{
if(r>=array[i])/*如果当前元素还可以放入背包,即背包剩余空间还大于当前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩余空间小于当前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已经选中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*贪婪算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物体,再考虑小的物体*/
if((value1+array[i])<=value)/*如果当前物体可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩余容量减少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)动态规划算法

解决0/1背包问题的方法有多种,最常用的有贪婪法和动态规划法。其中贪婪法无法得到问题的最优解,而动态规划法都可以得到最优解,下面是用动态规划法来解决0/1背包问题。

动态规划算法与分治法类似,其基本思想是将待求解问题分解成若干个子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的,若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费过多的时间。动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。

0/1背包问题

在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。
在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r?{c,c-w1 } 为剩余的背包容量。
在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案,如果不是,则会有一个更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一个更好的方案。
假设n=3, w=[100,14,10], p=[20,18,15], c= 116。若设x1 = 1,则在本次决策之后,可用的背包容量为r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的条件,所得值为1 5,但因为[x2,x3 ]= [1,0] 同样符合容量条件且所得值为1 8,因此[x2,x3 ] = [ 0,1] 并非最优策略。即x= [ 1,0,1] 可改进为x= [ 1,1,0 ]。若设x1 = 0,则对于剩下的两种物品而言,容量限制条件为116。总之,如果子问题的结果[x2,x3 ]不是剩余情况下的一个最优解,则[x1,x2,x3 ]也不会是总体的最优解。在此问题中,最优决策序列由最优决策子序列组成。假设f (i,y) 表示剩余容量为y,剩余物品为i,i + 1,...,n 时的最优解的值,即:利用最优序列由最优子序列构成的结论,可得到f 的递归式为:
当j>=wi时: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
当0<=j<wi时:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始时背包问题的最优解。
以本题为例:若0≤y<1 0,则f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最优解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
现在计算xi 值,步骤如下:若f ( 1 ,c) =f ( 2 ,c),则x1 = 0,否则x1 = 1。接下来需从剩余容量c-w1中寻求最优解,用f (2, c-w1) 表示最优解。依此类推,可得到所有的xi (i= 1.n) 值。
在该例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接着利用返回值3 8 -p1=18 计算x2 及x3,此时r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此时r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

㈤ C语言算法求助:背包问题

//如果每种商品只有一件,是0-1背包问题
读入的数据N代表物品个数
V代表背包容量。
//对于你的例子
,输入为
//5
16
//2
3
//3
2
//4
3
//5
7
//6
9
//输出为21
#include
<iostream>
using
namespace
std;
#define
MAXSIZE
1000
int
f[MAXSIZE
+
1],
c[MAXSIZE
+
1],
w[MAXSIZE
+
1];
int
main()
{
int
N,
V;
cin
>>
N
>>
V;
int
i
=
1;
for
(;
i
<=
N;
++i)
{
cin
>>
c[i]
>>
w[i];
}
for
(i
=
1;
i
<=
N;
++i)
{
for
(int
v
=
V;
v
>=
c[i];
--v)
//c[i]可优化为bound,
bound
=
max
{V
-
sum
c[i,...n],
c[i]}
{
f[v]
=
(f[v]
>
f[v
-
c[i]]
+
w[i]
?
f[v]
:
f[v
-
c[i]]
+
w[i]);
}
}
//当i=N时,可以跳出循环单独计算F[V]
cout
<<
f[V]
<<
'\n';
system("pause");
return
0;
}
//如果每种可以有多个,是完全背包问题,

㈥ C语言 贪心算法求背包问题

是你的冒泡排序出了问题~

你吧 原来的1-2-3号按照东西的价值重新排列现在的1-2-3对应原来的2-1-3了
所以 你输出的时候是按 1-2-3输出的话 就等于第一个是原来的X2 第二个是X1第三个是X3
而且你的冒泡排序用错了 只比较了 P[0]/K[0]和P[1]/K[1] P[1]/K[1]和P[2]/K[2]
周一我去学校帮你重新改改 我家的机器没有C++
周一晚上我会上传答案~我最近正好也要做算法的作业~
#include <stdio.h>
#include <math.h>
#define N 50

float find(float p[N],float w[N],float x[N] ,float M,int n) /*先放单位价值量大的物体,再考虑小的物体*/
{
int i;
float maxprice;
for (i = 0; i < n; i++)
x[i] = 0;
i = 0;
maxprice=0;
while (i < n && w[i] < M)
{
M=M-w[i];
x[i] =w[i]; /* 表示放入数量 */
maxprice=maxprice+p[i];
x[n-1]=M;
i++;
}
if (i < n &&M> 0)
{
maxprice=maxprice+p[i]*x[i]/w[i];
i++;
}
return maxprice;
}

int main()
{
int n,flag=1;
float temp,M,w[N],p[N],x[N];
int a[N],b[N];
int k,j,l=0;
printf(

㈦ C语言背包问题递归算法

你学过数据结构了吗?如果学过,那就比较好理解,该算法的思路和求二叉树的高度的算法的思路是十分类似的。把取这i个物体看成i个阶段,则该二叉树有i+1层。其中空背包时为根结点,左孩子则为放弃了第1个物品后的背包,右孩子为选取了第1个物品后的背包。今后在对第i个物品进行选择时,向左表示放弃,向右表示选取。则递归算法可如下:
int fun(int s, int i, int n) //s传入的是背包容量, i是进行第i个物品的选取,n为剩余物品的件数
{
if(s == 0) return 有解;
else if(剩余的每件物品都装不进|| n == 0) return 无解;
L = fun(s, i + 1, n - 1); //放弃第i个物品,则下一步的背包容量仍为s,然后看其是否有解,(递归调用进入左子树)
R = fun(s - wi, i + 1, n - 1); //选取第i个物品,则下一步的背包容量为s-wi,然后看其是否有解,(递归调用进入右子树)
return (l, r); //综合考虑左右两边,看哪边是正解或都无解。其实应该返回 return (L||R);
}

㈧ 贪心算法 部分背包问题

这道题是dp的思想啦,动态规划

(1)背包问题最优值的结构

动态规划的逆向思维法的第一步是刻画一个最优值的结构,如果我们能分析出一个问题的最优值包含其子问题的最优值,问题的这种性质称为最优子结构。一个问题的最优子结构性质是该问题可以使用动态规划的显着特征。

对一个负重能力为m的背包,如果我们选择装入一个第 i 种物品,那么原背包问题就转化为负重能力为 m-w[i] 的子背包问题。原背包问题的最优值包含这个子背包问题的最优值。若我们用背包的负重能力来划分状态,令状态变量s[k]表示负重能力为k的背包,那么s[m]的值只取决于s[k](k≤m)的值。因此背包问题具有最优子结构。

(2)递归地定义最优值

动态规划的逆向思维法的第二步是根据各个子问题的最优值来递归地定义原问题的最优值。对背包问题而言,有状态转移方程:

/max{s[k-w[i]]+v[i]}(其中1≤i≤n,且k-w[i]≥0)

s[k]= 若k>0且存在1≤i≤n使k-w[i]≥0,

\ 0 否则。

有了计算各个子问题的最优值的递归式,我们就可以直接编写对应的程序。下述的函数knapsack是输入背包的负重能力k,返回对应的子背包问题的最优值s[k]:

㈨ 用动态规划算法怎样求解01背包问题

动态规划主要解决的是多阶段的决策问题。

01背包中,状态为背包剩余的容量,阶段是每一个物品,决策是是否选择当前的物品。


所以用动态规划来解决是非常贴切的。

我们设f[V]表示已经使用容量为V时所能获得的最大价值,w[i]表示i物品的质量,c[i]表示i物品的价值。

for(inti=1;i<=n;i++)
for(intj=V;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+c[i]);

这便是所谓的一个状态转移方程。

f[j]表示在已经使用容量为j时的最大价值,f[j-w[i]]表示在已经使用容量为j-w[i]时的最大价值。

f[j]可以由f[j-w[i]]这个状态转移到达,表示选取w[i]这个物品,并从而获得价值为c[i]。

而每次f[j]会在选与不选中决策选出最优的方案。

从每一个物品,也就是每一个阶段的局部最优推出最后的全局最优值。这样就解决了01背包问题

㈩ 背包问题用分治算法怎么解决

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。

我的想法是,比如背包承重是m,物品t[]分别是t1,t2,...tn,
算法pakage(m,t[],p[]),最简单的算法思路就是把物品ti(1<=i<=n)放入背包,然后问题就变成在背包m-ti的承重下,盛放物品newt[](newt[]=t[]-ti),用递归方法可以很简单的描述,最后p[]就是得到的结果.但是这么做算法复杂度非常高,所以必须优化。只是给你提供一个思路,希望有用
pakage(m,t[],p[]){
if(m==0||t.length()==0){
return;
}
if(null!=t){
for(int i=0;i<t.length;i++){
//把t[i]放入背包
//newt[]=t-t[i];
package(m-t[i],newt[],p[]);
}
}
}

热点内容
安卓忘记屏幕时间怎么办 发布:2024-11-07 20:46:08 浏览:180
酒店服务器异常怎么办 发布:2024-11-07 20:46:03 浏览:805
电视买什么牌的什么配置好 发布:2024-11-07 20:41:55 浏览:652
光遇安卓用什么拍视频比较好 发布:2024-11-07 20:23:02 浏览:991
华为云服务器搭建网站 发布:2024-11-07 20:22:39 浏览:251
手机刷安卓卡需要注意什么 发布:2024-11-07 20:21:09 浏览:23
块存储客户端 发布:2024-11-07 20:12:14 浏览:972
scratch打地鼠编程 发布:2024-11-07 20:06:41 浏览:211
微信存储空间里聊天记录删除 发布:2024-11-07 20:05:31 浏览:166
无损压缩格式有哪些 发布:2024-11-07 19:54:40 浏览:932