中射频算法
1. 射频识别技术简介
射频识别技术(Radio Frequency Identification,缩写RFID),射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。
从信息传递的基本原理来说,射频识别技术在低频段基于变压器耦合模型(初级与次级之间的能量传递及信号传递),在高频段基于雷达探测目标的空间耦合模型(雷达发射电磁波信号碰到目标后携带目标信息返回雷达接收机)。1948年哈里斯托克曼发表的"利用反射功率的通信"奠定了射频识别射频识别技术的理论基础。
[编辑本段]射频识别技术的发展
1940-1950年:雷达的改进和应用催生了射频识别技术,1948年奠定了射频识别技术的理论基础。
1950-1960年:早期射频识别技术的探索阶段,主要处于实验室实验研究。
1960-1970年:射频识别技术的理论得到了发展,开始了一些应用尝试。
1970-1980年:射频识别技术与产品研发处于一个大发展时期,各种射频识别技术测试得到加速。出现了一些最早的射频识别应用。
1980-1990年:射频识别技术及产品进入商业应用阶段,各种规模应用开始出现。
1990-2000年:射频识别技术标准化问题日趋得到重视,射频识别产品得到广泛采用,射频识别产品逐渐成为人们生活中的一部分。
2000年后:标准化问题日趋为人们所重视,射频识别产品种类更加丰富,有源电子标签、无源电子标签及半无源电子标签均得到发展,电子标签成本不断降低,规模应用行业扩大。
至今,射频识别技术的理论得到丰富和完善。单芯片电子标签、多电子标签识读、无线可读可写、无源电子标签的远距离识别、适应高速移动物体的射频识别技术与产品正在成为现实并走向应用。
[编辑本段]RFID工作频率指南和典型应用
不同频段的RFID产品会有不同的特性,下面详细介绍无源的感应器在不同工作频率产品的特性以及主要的应用。
目前定义RFID产品的工作频率有低频、高频和超高频的频率范围内的符合不同标准的不同的产品,而且不同频段的RFID产品会有不同的特性。其中感应器有无源和有源两种方式,下面详细介绍无源的感应器在不同工作频率产品的特性以及主要的应用。
一、低频(从125KHz到134KHz)
其实RFID技术首先在低频得到广泛的应用和推广。该频率主要是通过电感耦合的方式进行工作, 也就是在读写器线圈和感应器线圈间存在着变压器耦合作用.通过读写器交变场的作用在感应器天线中感应的电压被整流,可作供电电压使用. 磁场区域能够很好的被定义,但是场强下降的太快。
特性:
1. 工作在低频的感应器的一般工作频率从120KHz到134KHz, TI 的工作频率为134.2KHz。该频段的波长大约为2500m.
2. 除了金属材料影响外,一般低频能够穿过任意材料的物品而不降低它的读取距离。
3. 工作在低频的读写器在全球没有任何特殊的许可限制。
4.低频产品有不同的封装形式。好的封装形式就是价格太贵,但是有10年以上的使用寿命。
5.虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6.相对于其他频段的RFID产品,该频段数据传输速率比较慢。
7.感应器的价格相对与其他频段来说要贵。
主要应用:
1. 畜牧业的管理系统
2. 汽车防盗和无钥匙开门系统的应用
3. 马拉松赛跑系统的应用
4. 自动停车场收费和车辆管理系统
5. 自动加油系统的应用
6. 酒店门锁系统的应用
7. 门禁和安全管理系统
符合的国际标准:
a) ISO 11784 RFID畜牧业的应用-编码结构
b) ISO 11785 RFID畜牧业的应用-技术理论
c) ISO 14223-1 RFID畜牧业的应用-空气接口
d) ISO 14223-2 RFID畜牧业的应用-协议定义
e) ISO 18000-2 定义低频的物理层、防冲撞和通讯协议
f) DIN 30745 主要是欧洲对垃圾管理应用定义的标准
二、高频(工作频率为13.56MHz)
在该频率的感应器不再需要线圈进行绕制,可以通过腐蚀活着印刷的方式制作天线。感应器一般通过负载调制的方式进行工作。也就是通过感应器上的负载电阻的接通和断开促使读写器天线上的电压发生变化,实现用远距离感应器对天线电压进行振幅调制。如果人们通过数据控制负载电压的接通和断开,那么这些数据就能够从感应器传输到读写器。
特性:
1. 工作频率为13.56MHz,该频率的波长大概为22m。
2. 除了金属材料外,该频率的波长可以穿过大多数的材料,但是往往会降低读取距离。感应器需要离开金属一段距离。
3. 该频段在全球都得到认可并没有特殊的限制。
4. 感应器一般以电子标签的形式。
5. 虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6. 该系统具有防冲撞特性,可以同时读取多个电子标签。
7. 可以把某些数据信息写入标签中。
8. 数据传输速率比低频要快,价格不是很贵。
主要应用:
1. 图书管理系统的应用
2. 瓦斯钢瓶的管理应用
3. 服装生产线和物流系统的管理和应用
4. 三表预收费系统
5. 酒店门锁的管理和应用
6. 大型会议人员通道系统
7. 固定资产的管理系统
8. 医药物流系统的管理和应用
9. 智能货架的管理
符合的国际标准:
a) ISO/IEC 14443 近耦合IC卡,最大的读取距离为10cm.
b) ISO/IEC 15693 疏耦合IC卡,最大的读取距离为1m.
c) ISO/IEC 18000-3 该标准定义了13.56MHz系统的物理层,防冲撞算法和通讯协议。
d) 13.56MHz ISM Band Class 1 定义13.56MHz符合EPC的接口定义。
三、超高频(工作频率为860MHz到960MHz之间)
超高频系统通过电场来传输能量。电场的能量下降的不是很快,但是读取的区域不是很好进行定义。该频段读取距离比较远,无源可达10m左右。主要是通过电容耦合的方式进行实现。
特性:
1. 在该频段,全球的定义不是很相同-欧洲和部分亚洲定义的频率为868MHz,北美定义的频段为902到905MHz之间,在日本建议的频段为950到956之间。该频段的波长大概为30cm左右。
2. 目前,该频段功率输出目前统一的定义(美国定义为4W,欧洲定义为500mW)。 可能欧洲限制会上升到2W EIRP。
3. 超高频频段的电波不能通过许多材料,特别是水,灰尘,雾等悬浮颗粒物资。相对于高频的电子标签来说,该频段的电子标签不需要和金属分开来。
4. 电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
5. 该频段有好的读取距离,但是对读取区域很难进行定义。
6. 有很高的数据传输速率,在很短的时间可以读取大量的电子标签。
主要应用:
1. 供应链上的管理和应用
2. 生产线自动化的管理和应用
3. 航空包裹的管理和应用
4. 集装箱的管理和应用
5. 铁路包裹的管理和应用
6. 后勤管理系统的应用
符合的国际标准:
a) ISO/IEC 18000-6 定义了超高频的物理层和通讯协议;空气接口定义了Type A和Type B两部分;支持可读和可写操作。
b) EPCglobal 定义了电子物品编码的结构和甚高频的空气接口以及通讯的协议。例如:Class 0, Class 1, UHF Gen2。
c) Ubiquitous ID 日本的组织,定义了UID编码结构和通信管理协议。
在将来,超高频的产品会得到大量的应用。例如WalMart, Tesco, 美国国防部和麦德龙超市都会在它们的供应链上应用RFID技术。
有源RFID技术(2.45GHz、5.8G)
有源RFID具备低发射功率、通信距离长、传输数据量大,可靠性高和兼容性好等特点,与无源RFID相比,在技术上的优势非常明显。被广泛地应用到公路收费、港口货运管理等应用中。
射频识别作为一种新兴的自动识别技术,在中国拥有巨大的发展潜力。
射频识别技术(RFID,Radio Frequency Identification)实际上是自动识别技术(AEI,Automatic Equipment Identification)在无线电技术方面的具体应用与发展。该项技术的基本思想是,通过采用一些先进的技术手段,实现人们对各类物体或设备 (人员、物品) 在不同状态(移动、静止或恶劣环境)下的自动识别和管理。
[编辑本段]射频识别(RFID)频段指导
目前定义RFID产品的工作频率有低频、高频和甚高频的频率范围内的符合不同标准的不同的产品,而且不同频段的RFID产品会有不同的特性。其中感应器有无源和有源两种方式,下面详细介绍无源的感应器在不同工作频率产品的特性以及主要的应用。
一、低频(从125KHz到134KHz)
其实RFID技术首先在低频得到广泛的应用和推广。该频率主要是通过电感耦合的方式进行工作, 也就是在读写器线圈和感应器线圈间存在着变压器耦合作用.通过读写器交变场的作用在感应器天线中感应的电压被整流,可作供电电压使用. 磁场区域能够很好的被定义,但是场强下降的太快。
特性:
1. 工作在低频的感应器的一般工作频率从120KHz到134KHz, TI 的工作频率为134.2KHz。该频段的波长大约为2500m.
2. 除了金属材料影响外,一般低频能够穿过任意材料的物品而不降低它的读取距离。
3. 工作在低频的读写器在全球没有任何特殊的许可限制。
4.低频产品有不同的封装形式。好的封装形式就是价格太贵,但是有10年以上的使用寿命。
5.虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6.相对于其他频段的RFID产品,该频段数据传输速率比较慢。
7.感应器的价格相对与其他频段来说要贵。
主要应用:
1. 畜牧业的管理系统
2. 汽车防盗和无钥匙开门系统的应用
3. 马拉松赛跑系统的应用
4. 自动停车场收费和车辆管理系统
5. 自动加油系统的应用
6. 酒店门锁系统的应用
7. 门禁和安全管理系统
符合的国际标准:
a) ISO 11784 RFID畜牧业的应用-编码结构
b) ISO 11785 RFID畜牧业的应用-技术理论
c) ISO 14223-1 RFID畜牧业的应用-空气接口
d) ISO 14223-2 RFID畜牧业的应用-协议定义
e) ISO 18000-2 定义低频的物理层、防冲撞和通讯协议
f) DIN 30745 主要是欧洲对垃圾管理应用定义的标准
二、高频(工作频率为13.56MHz)
在该频率的感应器不再需要线圈进行绕制,可以通过腐蚀活着印刷的方式制作天线。感应器一般通过负载调制的方式 的方式进行工作。也就是通过感应器上的负载电阻的接通和断开促使读写器天线上的电压发生变化,实现用远距离感应器对天线电压进行振幅调制。如果人们通过数据控制负载电压的接通和断开,那么这些数据就能够从感应器传输到读写器。
特性:
1. 工作频率为13.56MHz,该频率的波长大概为22m。
2. 除了金属材料外,该频率的波长可以穿过大多数的材料,但是往往会降低读取距离。感应器需要离开金属一段距离。
3. 该频段在全球都得到认可并没有特殊的限制。
4. 感应器一般以电子标签的形式。
5. 虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6. 该系统具有防冲撞特性,可以同时读取多个电子标签。
7. 可以把某些数据信息写入标签中。
8. 数据传输速率比低频要快,价格不是很贵。
主要应用:
1. 图书管理系统的应用
2. 瓦斯钢瓶的管理应用
3. 服装生产线和物流系统的管理和应用
4. 三表预收费系统
5. 酒店门锁的管理和应用
6. 大型会议人员通道系统
7. 固定资产的管理系统
8. 医药物流系统的管理和应用
9. 智能货架的管理
符合的国际标准:
a) ISO/IEC 14443 近耦合IC卡,最大的读取距离为10cm.
b) ISO/IEC 15693 疏耦合IC卡,最大的读取距离为1m.
c) ISO/IEC 18000-3 该标准定义了13.56MHz系统的物理层,防冲撞算法和通讯协议。
d) 13.56MHz ISM Band Class 1 定义13.56MHz符合EPC的接口定义。
三、甚高频(工作频率为860MHz到960MHz之间)
甚高频系统通过电场来传输能量。电场的能量下降的不是很快,但是读取的区域不是很好进行定义。该频段读取距离比较远,无源可达10m左右。主要是通过电容耦合的方式进行实现。
特性:
1. 在该频段,全球的定义不是很相同-欧洲和部分亚洲定义的频率为868MHz,北美定义的频段为902到905MHz之间,在日本建议的频段为950到956之间。该频段的波长大概为30cm左右。
2. 目前,该频段功率输出目前统一的定义(美国定义为4W,欧洲定义为500mW)。 可能欧洲限制会上升到2W EIRP。
3. 甚高频频段的电波不能通过许多材料,特别是水,灰尘,雾等悬浮颗粒物资。相对于高频的电子标签来说,该频段的电子标签不需要和金属分开来。
4. 电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
5. 该频段有好的读取距离,但是对读取区域很难进行定义。
6. 有很高的数据传输速率,在很短的时间可以读取大量的电子标签。
主要应用:
1. 供应链上的管理和应用
2. 生产线自动化的管理和应用
3. 航空包裹的管理和应用
4. 集装箱的管理和应用
5. 铁路包裹的管理和应用
6. 后勤管理系统的应用
符合的国际标准:
a) ISO/IEC 18000-6 定义了甚高频的物理层和通讯协议;空气接口定义了Type A和Type B两部分;支持可读和可写操作。
b) EPCglobal 定义了电子物品编码的结构和甚高频的空气接口以及通讯的协议。例如:Class 0, Class 1, UHF Gen2。
c) Ubiquitous ID 日本的组织,定义了UID编码结构和通信管理协议。
我们毫无怀疑,在将来,甚高频的产品会得到大量的应用。例如WalMart, Tesco, 美国国防部和麦德龙超市都会在它们的供应链上应用RFID技术。
[编辑本段]RFID
RFID是什么?
RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。
什么是RFID技术?
RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。
RFID是一种简单的无线系统,只有两个基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。
什么是RFID的基本组成部分?
标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;
阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
天线(Antenna):在标签和读取器间传递射频信号。
RFID技术的基本工作原理是什么?
RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
一套完整的RFID系统, 是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成, 其工作原理是Reader 发射一特定频率的无线电波能量给Transponder, 用以驱动 Transponder电路将内部的数据送出,此时 Reader 便依序接收解读数据, 送给应用程序做相应的处理。
以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成, 感应偶合(Inctive Coupling) 及后向散射偶合(Backscatter Coupling)两种, 一般低频的RFID大都采用第一种式, 而较高频大多采用第二种方式。
阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。 在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是RFID系统的信息载体,目前应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。
是什么让零售商如此推崇RFID?
据Sanford C. Bernstein公司的零售业分析师估计,通过采用RFID,沃尔玛每年可以节省83.5亿美元,其中大部分是因为不需要人工查看进货的条码而节省的劳动力成本。尽管另外一些分析师认为80亿美元这个数字过于乐观,但毫无疑问,RFID有助于解决零售业两个最大的难题:商品断货和损耗(因盗窃和供应链被搅乱而损失的产品),而现在单是盗窃一项,沃尔玛一年的损失就差不多有20亿美元,如果一家合法企业的营业额能达到这个数字,就可以在美国1000家最大企业的排行榜中名列第694位。研究机构估计,这种RFID技术能够帮助把失窃和存货水平降低25%。
RFID技术的典型应用是什么?
物流和供应管理
生产制造和装配
航空行李处理
邮件/快运包裹处理
文档追踪/图书馆管理
动物身份标识
运动计时
门禁控制/电子门票
道路自动收费
RFID读写设备
只有当有读写设备时,RFID才能发挥其作用。RFID读写设备有RFID读卡器,RFID读写模块等,目前市面上性价比比较高的有YW-201和YW-601U和YW-601R等。这些设备可以将RFID的数据读取或写入,并且做到很好的加密。
2. 射频识别时,aloha算法是怎样解决冲突的
目前的防冲突算法分两大类【一是基于曼彻斯特编码的二进制搜索算法及其改进算法, 二是基于随机数产生器的时隙算法及其改进算法下面分别介绍。二进制搜索算法及其改进算法在二进制搜索算法中电子标签的旧号必须采用曼彻斯特编码。曼彻斯特码可在多个射频卡同时响应时, 译出错误位置,以按位定出发生冲突的位置。根据冲突的位置搜索标签。二进制搜索算法只能识别旧号唯一的情况。改进的算法有动态二进制搜索算法算法改进的地方是对没有发生冲突的旧位只传送一次。这样就减少了重传的数据提高了效率。图二所提的基于动态二进制的二叉树搜索结构旧反冲突算法是对二进制搜索算法的改进。它的思想是对每次识别的冲突位进行分类, 分成、两部分从而形成一棵二叉树,
3. 射频传输中传输距离与发射功率有没有公式计算
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)
式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.
路径损耗是随着传输距离增大而增大。
无线传输距离计算
Pr(dBm) = Pt(dBm) - Ct(dB) + Gt(dB) - LFS(dB) + Gr(dB) - Cr(dB)
Pr:接受端灵敏度
Pt: 发送端功率
Cr: 接收端接头和电缆损耗
Ct: 发送端接头和电缆损耗
Gr: 接受端天线增益
Gt: 发送端天线增益
LFS: 自由空间损耗
将路径损耗公式代入并且确定其他固定参数就可以得到发射功率和传输距离的关系,不过这都是在理想状态下,实际上并不能达到
4. 什么是射频信号什么是视频信号什么是中频信号
1.射频信号:
就是经过调制的,拥有一定发射频率的电波。
2.视频信号:
是指电视信号、静止图像信号和可视电视图像信号。对于视频信号可支持三种制式:NTSC、PAL、SECAM。
3.中频信号:
是指一种中间频率的信号形式。中频是相对于基带信号和射频信号来讲的,中频可以有一级或多级,它是基带和射频之间过渡的桥梁。
(4)中射频算法扩展阅读
为了能够在空中传播电视信号,必须把视频全电视信号调制成高频或射频(RF-Radio Frequency)信号,每个信号占用一个频道,这样才能在空中同时传播多路电视节目而不会导致混乱。
射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316-89、IEC169、MIL-C-31012等标准。
视频信号就是图像信号。中频信号是高频信号经过变频而获得的一种信号,为了使放大器能够稳定的工作和减小干扰,一般的接收机都要将高频信号变为中频信号,电视机的图像中频信号是38MHZ.音频的中频信号是6.5MHZ。
5. 中射频是什么意思,哪位大哥知道
中频:不是一个频率范围,而是在变频系统中指中间过渡频率叫中频。实际上频率可以是Khz也可以是MHz
射频一般指300MHz~3000MHz的信号
6. 射频识别技术基本工作原理
RFID的工作原理是:标签进入磁场后,如果接收到阅读器发出的特殊射频信号,就能凭借感应电流所获得的能量发送出存储在芯片中的产品信息(即Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(即Active Tag,有源标签或主动标签),阅读器读取信息并解码后,送至中央信息系统进行有关数据处理。
RFID技术由Auto-ID中心开发,其应用形式为标记(tag)、卡和标签(label)设备。 标记设备由RFID芯片和天线组成,标记类型分为三种:自动式,半被动式和被动式。现在市场上开发的基本上是被动式RFID标记,因为这类设备造价较低,且易于配置。被动标记设备运用无线电波进行操作和通信,信号必须在识别器允许的范围内,通常是10英尺(约3米)。这类标记适合于短距离信息识别,如一次性剃须刀或可移动刀片包装盒这类小商品。 RFID芯片可以是只读的,也可是读/写方式,依据应用需求决定。被动式标记设备采用E2PROM(电擦写可编程只读存储器),便于运用特定电子处理设备往上面写数据。一般标记设备在出厂时都设定为只读方式。Auto-ID规范中还包含有死锁命令,以在适当情形下阻止跟踪进程。
射频识别技术原理Auto-ID中心开发的电子产品代码(EPC)规范能识别目标,以及所有与目标相关的数据。EPC系统运用正确的数据库链接到EPC码,厂商和零售商能依据权限进行查询、管理和变更操作。一旦标记贴到产品或设备上,RFID识别器便能读取存储于标记中的数据。Auto-ID计划将EPC系统发展成为全球标准,该标准主要包括:识别目标的特定代码(EPC);定义数据的所有者(EPC管理器);定义代码及标记的其余信息;定义货物参数,如库存单元号;将EPC代码转换为Internet地址(目标命名服务ONS);对目标进行描述(物理置标语言PML);聚集和处理RFID数据(专家软件);分配给每类目标的特定号码(串行号);用于互操作性的规范最小集(标记及识别规范),采用RFID技术最大的好处是可以对企业的供应链进行透明管理,有效地降低成本。
系统组成射频识别系统至少应包括以下两个部分,一是读写器,二是电子标签(或称射频卡、应答器等,本文统称为电子标签)。另外还应包括天线,主机等。RFID系统在具体的应用过程中,根据不同的应用目的和应用环境,系统的组成会有所不同,但从RFID系统的工作原理来看,系统一般都由信号发射机、信号接收机、发射接收天线几部分组成。下面分别加以说明:
信号发射机
在RFID 系统中,信号发射机为了不同的应用目的,会以不同的形式存在,典型的形式是标签(TAG)。标签相当于条码技术中的条码符号,用来存储需要识别传输的信息,另外,与条码不同的是,标签必须能够自动或在外力的作用下,把存储的信息主动发射出去。
信号接收机
在RFID系统中,信号接收机一般叫做阅读器。根据支持的标签类型不同与完成的功能不同,阅读器的复杂程度是显着不同的。阅读器基本的功能就是提供与标签进行数据传输的途径。另外,阅读器还提供相当复杂的信号状态控制、奇偶错误校验与更正功能等。标签中除了存储需要传输的信息外,还必须含有一定的附加信息,如错误校验信息等。识别数据信息和附加信息按照一定的结构编制在一起,并按照特定的顺序向外发送。阅读器通过接收到的附加信息来控制数据流的发送。一旦到达阅读器的信息被正确的接收和译解后,阅读器通过特定的算法决定是否需要发射机对发送的信号重发一次,或者知道发射器停止发信号,这就是“命令响应协议”。使用这种协议,即便在很短的时间、很小的空间阅读多个标签,也可以有效地防止“欺骗问题”的产生。
编程器
只有可读可写标签系统才需要编程器。编程器是向标签写入数据的装置。编程器写入数据一般来说是离线(OFF-LINE)完成的,也就是预先在标签中写入数据,等到开始应用时直接把标签黏附在被标识项目上。也有一些RFID应用系统,写数据是在线(ON-LINE)完成的,尤其是在生产环境中作为交互式便携数据文件来处理时。
天线
天线是标签与阅读器之间传输数据的发射、接收装置。在实际应用中,除了系统功率,天线的形状和相对位置也会影响数据的发射和接收,需要专业人员对系统的天线进行设计、安装。
7. 射频工程师与算法工程师哪个好就业
射频工程师是从事终端产品硬件射频部分设计开发,并对产品的实现过程进行跟踪确认的专业人员。工作内容为负责射频相关设计方案的可行性分析和实施; 制定和建立开发流程,完成相应产品相关文挡(如原理图、PCB板和BOM表和测试分析报告等)的拟制及评审; 射频器件的新供应商、新元器件的评估; 和结构生产等部门密切协作,保证整个产品的相关目标按期实现; 项目量产后支持和维护生产线,解决与射频部分相关的问题;为其他部门提供所需要的射频技术支持。
8. 射频中怎么计算电感耦合
用阻抗分析
9. 什么是射频
射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300KHz~300GHz之间。
射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。
(9)中射频算法扩展阅读:
工作原理:
系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;
系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
在耦合方式(电感-电磁)、通信流程(FDX、HDX、 SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。
高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制, 用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异。
阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的命令;控制与射频卡的通信过程(主-从原则);信号的编解码。
对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。
无线射频识别系统的读写距离是一个很关键的参数。目前,长距离无线射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。
影响射频卡读写距离的因素包括天线工作频率、阅读器的 RF 输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的 Q 值、 天线方向、 阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的 40%~80%。
10. 哪位高人知道华为无线中射频算法的岗位怎么样
射频算法主要是做数字预失真等功放线性化方面的工作,主要还是侧重FPGA方面的工作,射频电路范围比较广,不过估计您所说的也是射频功放实际电路方面的调试工作