二叉树的先序遍历算法
‘壹’ 二叉树前序遍历法举例!急急急!!!
二叉树的三种金典遍历法
1.前序遍历法:
前序遍历(DLR)
前序遍历(DLR)
前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
若二叉树为空则结束返回,否则:
(1)访问根结点
(2)前序遍历左子树
(3)前序遍历右子树
注意的是:遍历左右子树时仍然采用前序遍历方法。
如上图所示二叉树
前序遍历,也叫先根遍历,遍历的顺序是,根,左子树,右子树
遍历结果:ABDECF
中序遍历,也叫中根遍历,顺序是左子树,根,右子树
遍历结果:DBEAFC
后序遍历,也叫后根遍历,遍历顺序,左子树,右子树,根
遍历结果:DEBFCA
2.中序遍历法:
中序遍历
中序遍历(LDR)
中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树。在遍历左、右子树时,仍然先遍历左子树,再访问根结点,最后遍历右子树。即:
若二叉树为空则结束返回,否则:
(1)中序遍历左子树
(2)访问根结点
(3)中序遍历右子树。
注意的是:遍历左右子树时仍然采用中序遍历方法。
3.后序遍历法:
后序遍历
简介
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
递归算法
算法描述:
(1)若二叉树为空,结束
(2)后序遍历左子树
(3)后序遍历右子树
(4)访问根结点
伪代码
PROCEDUREPOSTRAV(BT)
IFBT<>0THEN
{
POSTRAV(L(BT))
POSTRAV(R(BT))
OUTPUTV(BT)
}
RETURN
c语言描述
structbtnode
{
intd;
structbtnode*lchild;
structbtnode*rchild;
};
voidpostrav(structbtnode*bt)
{
if(bt!=NULL)
{
postrav(bt->lchild);
postrav(bt->rchild);
printf("%d",bt->d);
}
}
非递归算法
算法1(c语言描述):
voidpostrav1(structbtnode*bt)
{
structbtnode*p;
struct
{
structbtnode*pt;
inttag;
}st[MaxSize];
}
inttop=-1;
top++;
st[top].pt=bt;
st[top].tag=1;
while(top>-1)/*栈不为空*/
{
if(st[top].tag==1)/*不能直接访问的情况*/
{
p=st[top].pt;
top--;
if(p!=NULL)
{
top++;/*根结点*/
st[top].pt=p;
st[top].tag=0;
top++;/*右孩子结点*/
st[top].pt=p->p->rchild;
st[top].tag=1;
top++;/*左孩子结点*/
st[top].pt=p->lchild;
st[top].tag=1;
}
}
if(st[top].tag==0)/*直接访问的情况*/
{
printf("%d",st[top].pt->d);
top--;
}
}
}
算法2:
voidpostrav2(structbtnode*bt)
{
structbtnode*st[MaxSize],*p;
intflag,top=-1;
if(bt!=NULL)
{
do
{
while(bt!=NULL)
{
top++;
st[top]=bt;
bt=bt->lchild;
}
p=NULL;
flag=1;
while(top!=-1&&flag)
{
bt=st[top];
if(bt->rchild==p)
{
printf("%d",bt->d);
top--;
p=bt;
}
else
{
bt=bt->rchild;
flag=0;
}
}
}while(top!=-1)
printf(" ");
}
}
老曹回答必属佳作记得给分谢谢合作!
‘贰’ 二叉树先序遍历算法
#include<stdio.h>
struct node//定义节点
{
int num;
node *left;
node *right;
};
void fscan(node *root)//先序遍历函数,root为根节点
{
if(root==NULL);
else
{
fscan(root->left);
printf("%d\n",root->num);
fscan(root->right);
}
}
void main()
{
//1,生成一个二叉树,并得到它的根节点
//2,调用fscan遍历二叉树
}
‘叁’ 二叉链表存储二叉树的先序遍历算法
二叉链表存储二叉树的先序遍历算法,通常采用递归的算法实现。首先访问二叉树的根节点,然后递归遍历它的左子树,最后,递归遍历他的右子树。
‘肆’ 二叉树先序遍历递归算法和非递归算法本质区别
在前面一文,说过二叉树的递归遍历算法(二叉树先根(先序)遍历的改进),此文主要讲二叉树的非递归算法,采用栈结构
总结先根遍历得到的非递归算法思想如下:
1)入栈,主要是先头结点入栈,然后visit此结点
2)while,循环遍历当前结点,直至左孩子没有结点
3)if结点的右孩子为真,转入1)继续遍历,否则退出当前结点转入父母结点遍历转入1)
先看符合此思想的算法:
[cpp] view plain print?
int (const BiTree &T, int (*VisitNode)(TElemType data))
{
if (T == NULL)
{
return -1;
}
BiTNode *pBiNode = T;
SqStack S;
InitStack(&S);
Push(&S, (SElemType)T);
while (!IsStackEmpty(S))
{
while (pBiNode)
{
VisitNode(pBiNode->data);
if (pBiNode != T)
{
Push(&S, (SElemType)pBiNode);
}
pBiNode = pBiNode->lchild;
}
if(pBiNode == NULL)
{
Pop(&S, (SElemType*)&pBiNode);
}
if ( pBiNode->rchild == NULL)
{
Pop(&S, (SElemType*)&pBiNode); //如果此时栈已空,就有问题
}
pBiNode = pBiNode->rchild;
}
return 0;
}
‘伍’ 二叉树遍历的算法实现
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
⑴访问结点本身(N),
⑵遍历该结点的左子树(L),
⑶遍历该结点的右子树(R)。
以上三种操作有六种执行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。 根据访问结点操作发生位置命名:
① NLR:前序遍历(PreorderTraversal亦称(先序遍历))
——访问根结点的操作发生在遍历其左右子树之前。
② LNR:中序遍历(InorderTraversal)
——访问根结点的操作发生在遍历其左右子树之中(间)。
③ LRN:后序遍历(PostorderTraversal)
——访问根结点的操作发生在遍历其左右子树之后。
注意:
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 1.先(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴ 访问根结点;
⑵ 遍历左子树;
⑶ 遍历右子树。
2.中(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵访问根结点;
⑶遍历右子树。
3.后(根)序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵遍历右子树;
⑶访问根结点。 用二叉链表做为存储结构,中序遍历算法可描述为:
void InOrder(BinTree T)
{ //算法里①~⑥是为了说明执行过程加入的标号
① if(T) { // 如果二叉树非空
② InOrder(T->lchild);
③ printf(%c,T->data); // 访问结点
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder 计算中序遍历拥有比较简单直观的投影法,如图
⑴在搜索路线中,若访问结点均是第一次经过结点时进行的,则是前序遍历;若访问结点均是在第二次(或第三次)经过结点时进行的,则是中序遍历(或后序遍历)。只要将搜索路线上所有在第一次、第二次和第三次经过的结点分别列表,即可分别得到该二叉树的前序序列、中序序列和后序序列。
⑵上述三种序列都是线性序列,有且仅有一个开始结点和一个终端结点,其余结点都有且仅有一个前驱结点和一个后继结点。为了区别于树形结构中前驱(即双亲)结点和后继(即孩子)结点的概念,对上述三种线性序列,要在某结点的前驱和后继之前冠以其遍历次序名称。
【例】上图所示的二叉树中结点C,其前序前驱结点是D,前序后继结点是E;中序前驱结点是E,中序后继结点是F;后序前驱结点是F,后序后继结点是A。但是就该树的逻辑结构而言,C的前驱结点是A,后继结点是E和F。
二叉链表基本思想
基于先序遍历的构造,即以二叉树的先序序列为输入构造。
注意:
先序序列中必须加入虚结点以示空指针的位置。
【例】
建立上图所示二叉树,其输入的先序序列是:ABD∮∮∮CE∮∮F∮∮。
构造算法
假设虚结点输入时以空格字符表示,相应的构造算法为:
void CreateBinTree (BinTree **T){ //构造二叉链表。T是指向根指针的指针,故修改*T就修改了实参(根指针)本身 char ch; if((ch=getchar())=='') *T=NULL; //读入空格,将相应指针置空 else{ //读人非空格 *T=(BinTNode *)malloc(sizeof(BinTNode)); //生成结点 (*T)->data=ch; CreateBinTree(&(*T)->lchild); //构造左子树 CreateBinTree(&(*T)->rchild); //构造右子树 }}
注意:
调用该算法时,应将待建立的二叉链表的根指针的地址作为实参。
示例
设root是一根指针(即它的类型是BinTree),则调用CreateBinTree(&root)后root就指向了已构造好的二叉链表的根结点。
二叉树建立过程见
下面是关于二叉树的遍历、查找、删除、更新数据的代码(递归算法): #include<iostream>#include<cstdio>#include<cmath>#include<iomanip>#include<cstdlib>#include<ctime>#include<algorithm>#include<cstring>#include<string>#include<vector>#include<list>#include<stack>#include<queue>#include<map>#include<set>usingnamespacestd;typedefintT;classbst{structNode{Tdata;Node*L;Node*R;Node(constT&d,Node*lp=NULL,Node*rp=NULL):data(d),L(lp),R(rp){}};Node*root;intnum;public:bst():root(NULL),num(0){}voidclear(Node*t){if(t==NULL)return;clear(t->L);clear(t->R);deletet;}~bst(){clear(root);}voidclear(){clear(root);num=0;root=NULL;}boolempty(){returnroot==NULL;}intsize(){returnnum;}TgetRoot(){if(empty())throwemptytree;returnroot->data;}voidtravel(Node*tree){if(tree==NULL)return;travel(tree->L);cout<<tree->data<<'';travel(tree->R);}voidtravel(){travel(root);cout<<endl;}intheight(Node*tree){if(tree==NULL)return0;intlh=height(tree->L);intrh=height(tree->R);return1+(lh>rh?lh:rh);}intheight(){returnheight(root);}voidinsert(Node*&tree,constT&d){if(tree==NULL)tree=newNode(d);elseif(ddata)insert(tree->L,d);elseinsert(tree->R,d);}voidinsert(constT&d){insert(root,d);num++;}Node*&find(Node*&tree,constT&d){if(tree==NULL)returntree;if(tree->data==d)returntree;if(ddata)returnfind(tree->L,d);elsereturnfind(tree->R,d);}boolfind(constT&d){returnfind(root,d)!=NULL;}boolerase(constT&d){Node*&pt=find(root,d);if(pt==NULL)returnfalse;combine(pt->L,pt->R);Node*p=pt;pt=pt->R;deletep;num--;returntrue;}voidcombine(Node*lc,Node*&rc){if(lc==NULL)return;if(rc==NULL)rc=lc;elsecombine(lc,rc->L);}boolupdate(constT&od,constT&nd){Node*p=find(root,od);if(p==NULL)returnfalse;erase(od);insert(nd);returntrue;}};intmain(){bstb;cout<<inputsomeintegers:;for(;;){intn;cin>>n;b.insert(n);if(cin.peek()=='
')break;}for(;;){cout<<inputdatapair:;intod,nd;cin>>od>>nd;if(od==-1&&nd==-1)break;b.update(od,nd);}}
‘陆’ 怎么先序遍历二叉树
要想先序遍历二叉树,采用递归的方法来解说是很方便的。
首先访问根结点,然后先序遍历根节点的左子树,最后先序遍历根结点的右子树。
要注意的是,这里的先序遍历左子树和右子树都是递归的概念,再次使用上面的递归算法。
‘柒’ 二叉树的遍历算法
这里有二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法。
1.先序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
PreOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
visite(p->data);
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
//通过下一次循环中的内嵌while实现右子树遍历
{
p=pop(s);
p=p->rchild;
}//endif
}//endwhile
}//PreOrderUnrec
2.中序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
InOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
{
p=pop(s);
visite(p->data);
//访问根结点
p=p->rchild;
//通过下一次循环实现右子树遍历
}//endif
}//endwhile
}//InOrderUnrec
3.后序遍历非递归算法
#define
maxsize
100
typedef
enum{L,R}
tagtype;
typedef
struct
{
Bitree
ptr;
tagtype
tag;
}stacknode;
typedef
struct
{
stacknode
Elem[maxsize];
int
top;
}SqStack;
void
PostOrderUnrec(Bitree
t)
{
SqStack
s;
stacknode
x;
StackInit(s);
p=t;
do
{
while
(p!=null)
//遍历左子树
{
x.ptr
=
p;
x.tag
=
L;
//标记为左子树
push(s,x);
p=p->lchild;
}
while
(!StackEmpty(s)
&&
s.Elem[s.top].tag==R)
{
x
=
pop(s);
p
=
x.ptr;
visite(p->data);
//tag为R,表示右子树访问完毕,故访问根结点
}
if
(!StackEmpty(s))
{
s.Elem[s.top].tag
=R;
//遍历右子树
p=s.Elem[s.top].ptr->rchild;
}
}while
(!StackEmpty(s));
}//PostOrderUnrec
‘捌’ 二叉树先序遍历算法流程图怎么画,学的是数据结构c语言。
在计算机软件专业中,数据结构、以及 C 语言这两门课程是非常重要的两门课程。最为重要的是:如果将来想做计算机软件开发工作的话,那么对 C 语言中的指针编程、以及递归的概念是必须要熟练精通掌握的,因为它和数据结构课程中的链表、二叉树等内容的关系实在是太紧密了。但是这个编程技能必须要依靠自己多上机实践才能够真正彻底掌握的。
首先要搞明白二叉树的几种遍历方法:(1)、先序遍历法:根左右;(2)、中序遍历法:左根右;(3)、后序遍历法:左右根。其中根:表示根节点;左:表示左子树;右:表示右子树。
至于谈到如何画先序遍历的流程图,可以这样考虑:按照递归的算法进行遍历一棵二叉树。
程序首先访问根节点,如果根节点的值为空(NULL),则停止访问;如果根节点的值非空,则递归访问二叉树的左子树(left),然后是依然判断二叉树下面的左子树下面的根节点是否为空(NULL),如果根节点的值为空(NULL),则返回上一层,再访问二叉树的右子树(right)。依此类推。
‘玖’ 先序遍历二叉树的递归算法怎样理解(严蔚敏主编)
先序调用的时候,递归函数,先序函数会一直递归,直到t->next为空,即t为叶节点,需要注意的是当t->next 为空时,函数的实参没有传过去,所以t指向叶结点的父节点,更要注意的是,先序调用的递归函数还没执行完,在先序调用的最里层,要执行这个函数的最后一个语句,即先序访问右子树。
在了解递归函数时,要注意函数是一层一层执行的,把没有调用的函数看作哦是第一层,第一次调用的时候,,势必会第二次遇到调用函数,变成第二层,,,,
‘拾’ 二叉树的先序遍历算法
#include
struct
node//定义节点
{
int
num;
node
*left;
node
*right;
};
void
fscan(node
*root)//先序遍历函数,root为根节点
{
if(root==null);
else
{
fscan(root->left);
printf("%d\n",root->num);
fscan(root->right);
}
}
void
main()
{
//1,生成一个二叉树,并得到它的根节点
//2,调用fscan遍历二叉树
}