当前位置:首页 » 操作系统 » 数据挖掘算法决策树

数据挖掘算法决策树

发布时间: 2022-06-18 06:06:56

‘壹’ 数据挖掘的技术有哪些

①决策树技术


决策树是一种非常成熟的、普遍采用的数据挖掘技术。在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论。


②神经网络技术


神经网络是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,数据挖掘中的“神经网络”是由大量并行分布的微处理单元组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。


③回归分析技术


回归分析包括线性回归,这里主要是指多元线性回归和逻辑斯蒂回归。其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容。


④关联规则技术


关联规则是在数据库和数据挖掘领域中被发明并被广泛研究的一种重要模型,关联规则数据挖掘的主要目的是找出数据集中的频繁模式,即多次重复出现的模式和并发关系,即同时出现的关系,频繁和并发关系也称作关联。


⑤聚类分析技术


聚类分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”。针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分。经过划分后,每个群组内部各对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度。


⑥贝叶斯分类技术


贝叶斯分类方法是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。比如通过一个给定观察值的相关属性来判断其属于一个特定类别的概率。贝叶斯分类方法是基于贝叶斯定理的,朴素贝叶斯分类方法作为一种简单贝叶斯分类算法甚至可以跟决策树和神经网络算法相媲美。

‘贰’ 常用的数据挖掘算法有哪几类

常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。

目前已经进入大数据的时代,所以数据挖掘和大数据分析的就业前景非常好,学好大数据分析和数据挖掘可以在各个领域中发挥自己的价值;同时,大数据分析并不是一蹴而就的事情,而是需要你日积月累的数据处理经验,不是会被轻易替代的。一家公司的各项工作,基本上都都用数据体现出来,一位高级的数据分析师职位通常是数据职能架构中领航者,拥有较高的分析和思辨能力,对于业务的理解到位,并且深度知晓公司的管理和商业行为,他可以负责一个子产品或模块级别的项目,带领团队来全面解决问题,把控手下数据分析师的工作质量。

想要了解更多有关数据挖掘算法的信息,可以了解一下CDA数据分析师的课程。课程教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;教你用可落地、易操作的数据科学思维和技术模板构建出优秀模型,只教实用干货,以专精技术能力提升业务效果与效率。点击预约免费试听课。

‘叁’ 数据挖掘的常用方法都有哪些

在数据分析中,数据挖掘工作是一个十分重要的工作,可以说,数据挖掘工作占据数据分析工作的时间将近一半,由此可见数据挖掘的重要性,要想做好数据挖掘工作需要掌握一些方法,那么数据挖掘的常用方法都有哪些呢?下面就由小编为大家解答一下这个问题。
首先给大家说一下神经网络方法。神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳、提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身结构来表达输入和输出的关联知识。神经网络方法在数据挖掘中十分常见。
然后给大家说一下粗糙集方法。粗糙集理论是一种研究不精确、不确定知识的数学工具。粗糙集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。粗糙集理论能够在缺少先验知识的情况下,对数据进行分类处理。在该方法中知识是以信息系统的形式表示的,先对信息系统进行归约,再从经过归约后的知识库抽取得到更有价值、更准确的一系列规则。因此,基于粗糙集的数据挖掘算法实际上就是对大量数据构成的信息系统进行约简,得到一种属性归约集的过程,最后抽取规则。
而决策树方法也是数据挖掘的常用方法之一。决策树是一种常用于预测模型的算法,它通过一系列规则将大量数据有目的分类,从中找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,易于理解、精度较高,特别适合大规模的数据处理,在知识发现系统中应用较广。它的主要缺点是很难基于多个变量组合发现规则。在数据挖掘中,决策树常用于分类。
最后给大家说的是遗传算法。遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。数据挖掘是从大量数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息。因此,许多数据挖掘问题可以看成是搜索问题,数据库或者数据仓库为搜索空间,挖掘算法是搜索策略。
上述的内容就是我们为大家讲解的数据挖掘工作中常用的方法了,数据挖掘工作常用的方法就是神经网络方法、粗糙集方法、决策树方法、遗传算法,掌握了这些方法才能够做好数据挖掘工作。

‘肆’ 数据挖掘常用算法有哪些

1、 朴素贝叶斯


朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件独立性假设,即在类已知的条件下,各个特征之间的分布是独立的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。


2、逻辑回归(logistic regression)


逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。


3、 线性回归


线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化。


4、最近邻算法——KNN


KNN即最近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个最小距离的样本;根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。


5、决策树


决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。


6、SVM支持向量机


高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

‘伍’ 数据挖掘有哪些方法

1、神经元网络办法


神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。


2、遗传算法


遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。


3、决策树算法办法


决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。


4、遮盖正例抵触典例办法


它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。


5、数据剖析办法


在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。


6、含糊集办法


即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。

‘陆’ 大数据挖掘的算法有哪些

大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。

如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。

‘柒’ 关于数据挖掘中决策树的知识

在数据挖掘中,有很多的算法是需要我们去学习的,比如决策树算法。在数据挖掘中,决策树能够帮助我们解决更多的问题。当然,关于决策树的概念是有很多的,所以说我们需要多多学习多多总结,这样才能够学会并且学会数据挖掘的知识,在这篇文章中我们就重点为大家介绍一下关于决策树的相关知识。
1.决策树的算法
决策树的算法是以树状结构表示数据分类的结果。一般情况,一棵决策树包含一个根节点、若干个内部结点和若干个叶结点。而叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定测试序列。决策树学习的目的就是为了产生一棵泛化能力强,即能处理未见示例能力强的决策树。这些就是决策树算法的结构。
2.决策树的原理
一般来说,决策树归纳的基本算法是贪心算法,自顶向下以递归方式构造决策树。而贪心算法在每一步选择中都采取在当前状态下最优的选择。在决策树生成过程中,划分选择即属性选择度量是关键。通过属性选择度量,选择出最好的将样本分类的属性。这样就能够方便数据属性的划分,然后,下一步是树的剪枝。在决策树学习中,为了尽可能正确分类训练样本,结点划分过程将不断重复,这样才能够使用决策树解决很多的问题。而分类是数据挖掘中的一种应用方法,而决策树则是一种典型的普遍使用的分类方法,并且决策树技术早已被证明是利用计算机模拟人决策的有效方法。
3.决策树的现状
近年来随着信息技术、计算机科学的迅速发展,决策树作为重要方法之一,越来越受到人们的关注。而其在人工智能方面的潜力以及与越来越多新技术的结合,由此可见,决策树在数据挖掘乃至数据分析中还是有很长的使用时间,这就是决策树至今经典的原因。
在这篇文章中我们给大家介绍了关于数据挖掘中决策树的知识,当大家学习了决策树的概念,决策树的结构以决策树的原理,就能够掌握决策树的基础知识。不过要想学习数据挖掘,还是要学习更多的知识,希望这篇文章能够帮助到大家。

‘捌’ 数据挖掘的方法有哪些

数据挖掘的的方法主要有以下几点:
1.分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。为了对数据进行较为准确的测试并据此分类,我们采用决策树算法,而决策树中比较典型的几种方法为:ID3算法,此方法具有较强的实用性,适用于大规模数据处理;KNN算法,此方法算量较大,适用于分别类别的数据处理。
2..聚类分析挖掘方法。聚类分析挖掘方法主要应用于样品与指标分类研究领域,是一种典型的统计方法,广泛应用于商业领域。此聚类分析方法根据适用对象不同又可分为四种分析挖掘方法:基于网格的聚类分析方法、基于分层的聚类方法、基于密度的聚类挖掘方法和基于模型的聚类方法。
3.预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。而现在预测方法主要采用神经网络与支持向量机算法,进行数据分析计算,同时可预测未来数据的走向趋势。

关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

‘玖’ 三种经典的数据挖掘算法

算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。
1.KNN算法
KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。
2.Naive Bayes算法
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。
3.CART算法
CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。
在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。

‘拾’ 数据挖掘有哪几种方法

1、神经元网络办法


神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。


2、遗传算法


遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。


3、决策树算法办法


决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。


粗集基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。


4、遮盖正例抵触典例办法


它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。


5、数据剖析办法


在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。


6、含糊集办法


即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。


关于大数据在市场营销方面的优势有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

热点内容
python调用外部程序 发布:2025-01-16 20:14:09 浏览:396
缓解压力英语作文 发布:2025-01-16 20:13:31 浏览:64
javaname 发布:2025-01-16 20:13:15 浏览:21
用户访问表空间 发布:2025-01-16 20:07:07 浏览:943
java代码自动编译 发布:2025-01-16 19:58:14 浏览:313
编程很困难 发布:2025-01-16 19:58:09 浏览:673
gg登录源码 发布:2025-01-16 19:58:07 浏览:292
微信收藏表情文件夹 发布:2025-01-16 19:28:57 浏览:15
ra服务器搭建 发布:2025-01-16 19:28:12 浏览:18
javaftp读取 发布:2025-01-16 19:28:02 浏览:185