改进蚁群算法
① 蚁群算法与遗传算法的区别
都属于智能优化算法
但是蚁群算法具有一定的记忆性,遗传算法没有
蚁群算法有几种原则,比如觅食原则,避障原则等,遗传算法没有
蚁群算法属于群智能优化算法,具有并行性,每个粒子都可以主动寻优,遗传算法不行
蚁群算法基于信息素在环境中的指示,遗传算法是基于优胜劣汰的生物进化思想
遗传算法有选择,交叉,变异三种算子,每种算子又有各自的不同方法,通过对算子方法的修改和搭配,可以得到不同的改进遗传算法
蚁群算法则多和其他智能算法相结合,得到改进的蚁群算法
② 蚁群算法,退火算法这些东西究竟属于什么,这些东西要从哪里才能系统学习
第1章绪论
1.1蚂蚁的基本习性
1.1.1蚂蚁的信息系统
1.1.2蚁群社会的遗传与进化
1.2蚁群觅食行为与觅食策略
1.2.1蚂蚁的觅食行为
1.2.2蚂蚁的觅食策略
1.3人工蚁群算法的基本思想
1.3.1人工蚁与真实蚂蚁的异同
1.3.2人工蚁群算法的实现过程
1.4蚁群优化算法的意义及应用
1.4.1蚁群优化算法的意义
l.4.2蚁群算法的应用
1.5蚁群算法的展望
第2章蚂蚁系统——蚁群算法的原型
2.1蚂蚁系统模型的建立
2.2蚁量系统和蚁密系统的模型
2.3蚁周系统模型
第3章改进的蚁群优化算法
3.1带精英策略的蚂蚁系统
3.2基于优化排序的蚂蚁系统
3.3蚁群系统
3.3.1蚁群系统状态转移规则
3.3.2蚁群系统全局更新规则
3.3.3蚁群系统局部更新规则
3.3.4候选集合策略
3.4最大一最小蚂蚁系统
3.4.1信息素轨迹更新
3.4.2信息素轨迹的限制
3.4.3信息素轨迹的初始化
3.4.4信息素轨迹的平滑化
3.5最优一最差蚂蚁系统
3.5.1最优一最差蚂蚁系统的基本思想
3.5.2最优一最差蚂蚁系统的工作过程
第4章蚁群优化算法的仿真研究
4.1蚂蚁系统三类模型的仿真研究
4.1.1三类模型性能的比较
4.2.2基于统计的参数优化
4.2基于蚁群系统模型的仿真研究
4.2.1局部优化算法的有效性
4.2.2蚁群系统与其他启发算法的比较
4.3最大一最小蚂蚁系统的仿真研究
4.3.1信息素轨迹初始化研究
4.3.2信息素轨迹量下限的作用
4.3.3蚁群算法的对比
4.4最优一最差蚂蚁系统的仿真研究
4.4.1参数ε的设置
4.4.2几种改进的蚁群算法比较
第5章蚁群算法与遗传、模拟退火算法的对比
5.1遗传算法
5.1.1遗传算法与自然选择
5.1.2遗传算法的基本步骤
5.1.3旅行商问题的遗传算法实现
5.2模拟退火算法
5.2.1物理退火过程和Metroplis准则
5.2.2模拟退火法的基本原理
5.3蚁群算法与遗传算法、模拟退火算法的比较
5.3.1三种算法的优化质量比较
5.3.2三种算法收敛速度比较
5.3.3三种算法的特点与比较分析
第6章蚁群算法与遗传、免疫算法的融合
6.1遗传算法与蚂蚁算法融合的GAAA算法
6.1.1遗传算法与蚂蚁算法融合的基本思想
……
第7章自适应蚁群算法
第8章并行蚁群算法
第9章蚁群算法的收敛性与蚁群行为模型
第10章蚁群算法在优化问题中的应用
附录
参考文献
③ 想要对蚁群算法中的信息素更新规则进行改进,可是不知道如何着手,求大神给个思路吧
先查一查有没有相关的包.如果是要用aproprio算法,建议把算法看懂,自己试一试.应该不难.
④ 基于改进蚁群算法的车辆路径问题研究
车辆路径问题(Vehicle Routing Problem,简称VRP)来源于交通运输,由Dantzig[1]于1959年提出,它是组合优化问题中一个典型的NP-hard问题,用于研究亚特兰大炼油厂向各加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点,吸引众多学者对其进行研究。通常用图G=(V,E)用来描述该问题[2],在图G=(V,E)中,V={0,1,2,…,n},E={(i,j),i≠j,i,j∈V},节点1表示仓库(depot),其它节点为客户。每个客户的需求为qi,边(i,j)对应的距离或运输时间或成本为Cij,所有车辆运输能力为Q,车辆从仓库出发,完成运输任务后回到仓库,每个顾客只能接受一次服务,问题的目标函数通常是车辆数和运输成本最小化。由于该问题的复杂性,寻找到一种高效、精确的算法的可能性微乎其微,人们开始尝试利用仿生智能算法求解。 蚁群算法是一种新的群体智能启发式优化方法,适合求解车辆路径等组合优化问题。最初由意大利学者Dorigo[3][4]等人提出用于解决旅行商问题,随着研究的不断深入,已经陆续渗透到电子、通讯、车间调度等工程领域。John E. Bell[5]将蚂蚁系统优化的亚启发式方法应用到VRP问题的求解。Silvia[6]探讨了在车辆容量限制条件下的VRP问题,在亚启发式算法基础上提出了CVRP 的蚁群算法,并取得较好的效果。刘志勋[7]等在分析VRP和TSP区别基础上,构造了求解VRP的自适应蚁群算法,提出了近似解可行化的解决策略。蚁群算法由于基本蚁群算法收敛速度慢且易陷于局部最优,很难在较短时间内对大规模VRP求得满意最优解,且该算法极易出现停滞现象,因此有必要对 算法进行改进。
⑤ 基于改进蚁群算法的机器人路径规划研究,课题的程序,求助各路大神!毕业设计实在做不出来!
改进蚁群算法的机器人路径规划
这个方面的设计研究,是可以定好方向的。
⑥ 如何提高蚁群路由算法收敛速度
蚂蚁算法是一种新型随机优化算法,能有效解决Ad Hoc网络多约束的QoS路由问题,但存在收敛速度慢和易陷入局部最优等缺点.针对于此,在借鉴精英策略的基础上提出了一种基于双向收敛蚁群算法,并将该算法应用于Ad Hoc网络的QoS路由问题中.仿真结果表明,算法可明显提高数据包的投递率,降低端到端的传输时延.
可以
针对蚁群算法(ACA)寻优性质优良,但搜索时间长、收敛速度慢、易限于局部最优解,从而使其进一步推广应用受到局限的问题,对算法的全局收敛性进行了深入的理论研究,并从改善全局收敛性的角度对算法作了一系列改进,最后对Bayes29这一典型的TSP问题进行了仿真实验。实验结果证明,改进后的蚁群算法具有很好的全局收敛性能。这为蚁群算法的进一步理论研究打下了很好的基础,对其在各优化领域中的推广应用具有重要意义。
⑦ TSP中用蚁群算法和遗传算法有区别么
TSP,只是一个普通但很经典的NP-C问题。具有大的难以想象的解空间。一般的branch-and-bound算法是很难搞定的。于是,人们尝试智能算法,包括遗传算法,蚁群算法,粒子群算法等。遗传算法和蚁群算法都是基于种群的。但是这两个算法有着本质区别。遗传算法的进化机制是基于个体竞争,而蚁群算法的搜索机制则是蚂蚁之间的信息素传导机制下的群体合作。因此,蚁群算法,粒子群算法,人工鱼群算法等,被归纳为群智能算法,成为了一个有别于遗传算法的另一个进化计算领域的分支。由于搜索机制的不同,这两种算法对于不同的问题,具有不同的效率。就拿标准遗传算法和标准蚁群算法来说,应该是蚁群算法更适合求解TSP。然而,无论是遗传算法还是蚁群算法,都有大量的变种算法或者称为改进算法,所以很难简单的说谁更适合TSP。
记得采纳啊