当前位置:首页 » 操作系统 » 求解线性规划的算法

求解线性规划的算法

发布时间: 2022-06-13 08:32:36

Ⅰ 线性规划这类问题应该怎么解题

用MATLAB优化工具箱解线性规划
命令:x=linprog(c,A,b)
命令:x=linprog(c,A,b,Aeq,beq)
注意:若没有不等式: 存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].
命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)
[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0)
注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点
4、命令:[x,fval]=linprog(…)
返回最优解x及x处的目标函数值fval.
例1
解 编写M文件小xxgh1.m如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];
b=[850;700;100;900];
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2 解: 编写M文件xxgh2.m如下:
c=[6 3 4];
A=[0 1 0];
b=[50];
Aeq=[1 1 1];
beq=[120];
vlb=[30,0,20];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub
例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、
600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工
费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使
加工费用最低
解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上
加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:
编写M文件xxgh3.m如下:
f = [13 9 10 11 12 8];
A = [0.4 1.1 1 0 0 0
0 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1];
beq=[400 600 500];
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

例4.某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?
解 设需要一级和二级检验员的人数分别为x1、x2人,
编写M文件xxgh4.m如下:

c = [40;36];
A=[-5 -3];
b=[-45];
Aeq=[];
beq=[];
vlb = zeros(2,1);
vub=[9;15];
%调用linprog函数:
[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)

结果为:
x =
9.0000
0.0000
fval =360

即只需聘用9个一级检验员。
4.控制参数options的设置

Options中常用的几个参数的名称、含义、取值如下:
(1) Display: 显示水平.取值为’off’时,不显示输出; 取值为’iter’时,显示每次迭代的信息;取值为’final’时,显示最终结果.默认值为’final’.
(2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数.
(3) MaxIter: 允许进行迭代的最大次数,取值为正整数
控制参数options可以通过函数optimset创建或修改。命令的格式如下:
(1) options=optimset(‘optimfun’)
创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options.
(2)options=optimset(‘param1’,value1,’param2’,value2,...)
创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值.
(3)options=optimset(oldops,‘param1’,value1,’param2’,
value2,...)
创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数.
例:opts=optimset(‘Display’,’iter’,’TolFun’,1e-8)
该语句创建一个称为opts的优化选项结构,其中显示参数设为’iter’, TolFun参数设为1e-8.
用Matlab解无约束优化问题
一元函数无约束优化问题
常用格式如下:
(1)x= fminbnd (fun,x1,x2)
(2)x= fminbnd (fun,x1,x2 ,options)
(3)[x,fval]= fminbnd(...)
(4)[x,fval,exitflag]= fminbnd(...)
(5)[x,fval,exitflag,output]= fminbnd(...)
其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。
例1 求 在0<x<8中的最小值与最大值
主程序为wliti1.m:
f='2*exp(-x).*sin(x)';
fplot(f,[0,8]); %作图语句
[xmin,ymin]=fminbnd (f, 0,8)
f1='-2*exp(-x).*sin(x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果:
xmin = 3.9270 ymin = -0.0279
xmax = 0.7854 ymax = 0.6448

例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?

先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x;
主程序为wliti2.m:
[x,fval]=fminbnd('fun0',0,1.5);
xmax=x
fmax=-fval
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.
2、多元函数无约束优化问题
标准型为:min F(X)
命令格式为:
(1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 )
(2)x= fminunc(fun,X0 ,options);
或x=fminsearch(fun,X0 ,options)
(3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...)
(4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch
(5)[x,fval,exitflag,output]= fminunc(...);
或[x,fval,exitflag,output]= fminsearch(...)
说明:
• fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明:
[1] fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制:
LargeScale=’on’(默认值),使用大型算法
LargeScale=’off’(默认值),使用中型算法
[2] fminunc为中型优化算法的搜索方向提供了4种算法,由
options中的参数HessUpdate控制:
HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式;
HessUpdate=’dfp’,拟牛顿法的DFP公式;
HessUpdate=’steepdesc’,最速下降法
[3] fminunc为中型优化算法的步长一维搜索提供了两种算法,
由options中参数LineSearchType控制:
LineSearchType=’quadcubic’(缺省值),混合的二次和三
次多项式插值;
LineSearchType=’cubicpoly’,三次多项式插
• 使用fminunc和 fminsearch可能会得到局部最优解.
例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1)
1、编写M-文件 fun1.m:
function f = fun1 (x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

2、输入M文件wliti3.m如下:
x0 = [-1, 1];
x=fminunc(‘fun1’,x0);
y=fun1(x)
3、运行结果:
x= 0.5000 -1.0000
y = 1.3029e-10

例4 Rosenbrock 函数 f(x1,x2)=100(x2-x12)2+(1-x1)2
的最优解(极小)为x*=(1,1),极小值为f*=0.试用
不同算法(搜索方向和步长搜索)求数值最优解.
初值选为x0=(-1.2 , 2).

1. 为获得直观认识,先画出Rosenbrock 函数的三维图形,
输入以下命令:
[x,y]=meshgrid(-2:0.1:2,-1:0.1:3);
z=100*(y-x.^2).^2+(1-x).^2;
mesh(x,y,z)
2. 画出Rosenbrock 函数的等高线图,输入命令:
contour(x,y,z,20)
hold on
plot(-1.2,2,' o ');
text(-1.2,2,'start point')
plot(1,1,'o')
text(1,1,'solution')
3.用fminsearch函数求解
输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
[x,fval,exitflag,output]=fminsearch(f, [-1.2 2])
运行结果:
x =1.0000 1.0000
fval =1.9151e-010
exitflag = 1
output =
iterations: 108
funcCount: 202
algorithm: 'Nelder-Mead simplex direct search'

4. 用fminunc 函数
(1)建立M-文件fun2.m
function f=fun2(x)
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2
(2)主程序wliti44.m
Rosenbrock函数不同算法的计算结果
可以看出,最速下降法的结果最差.因为最速下降法特别不适合于从一狭长通道到达最优解的情况.
例5 产销量的最佳安排
某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.
符号说明
z(x1,x2)表示总利润;
p1,q1,x1分别表示甲的价格、成本、销量;
p2,q2,x2分别表示乙的价格、成本、销量;
aij,bi,λi,ci(i,j =1,2)是待定系数.
基本假设
1.价格与销量成线性关系
利润既取决于销量和价格,也依赖于产量和成本。按照市场规律,
甲的价格p1会随其销量x1的增长而降低,同时乙的销量x2的增长也
会使甲的价格有稍微的下降,可以简单地假设价格与销量成线性关系,
即: p1 = b1 - a11 x1 - a12 x2 ,b1,a11,a12 > 0,且a11 > a12;
同理, p2 = b2 - a21 x1- a22 x2 ,b2,a21,a22 > 0
2.成本与产量成负指数关系
甲的成本随其产量的增长而降低,且有一个渐进值,可以假设为
负指数关系,
总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2
若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,
a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则
问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z最大.
为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:
z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2
的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,
我们把它作为原问题的初始值.
模型求解
1.建立M-文件fun.m:
function f = fun(x)
y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1);
y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2);
f=-y1-y2;
2.输入命令:
x0=[50,70];
x=fminunc(‘fun’,x0),
z=fun(x)
3.计算结果:
x=23.9025, 62.4977, z=6.4135e+003
即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.

Ⅱ 线性规划的求解方法有哪些

求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。

Ⅲ 运筹学 图解法求解线性规划问题

用图解法求解两个变量的线性规划问题,是一种简单、快捷而明了的方法。求解思路,根据各约束条件绘出可行解区域,再根据目标函数确定其有效解,并求出其极值。

题1:x1=1.2;x2=0.2;min z=2*1.2+2*0.2=3

题3:x1=1.36;x2=2;max z=5*1.36+6*2=18.8

Ⅳ 高中的线性规划问题的步骤是怎样

[bz]蔡德锦 线性规划 网络网盘资源

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234

求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。

Ⅳ 线性规划整数解有简便方法吗

整数线性规划的解法总结
0-1整数线性规划是整数线性规划的特殊情况,在实际中有着广泛的应用。虽然变量的取值只有两个,但此类问题的求解却意外的困难,下面把有关的一些解法总结一下。
1.穷举法
把所有可能的解一一代入,然后比较满足约束的解,使目标函数最达到最优的解是最优解。这不失为一种方法,但不是一种好方法。如果问题规模大,则无法在可接受的时间内求得最优解。这也是求解整数规划的困难所在。
2.隐枚举法I
是穷举法的改进,其思路是先给出一个可行解,然后代入目标函数算出函数值得到一个上界(如果求最小值)或下界(如果是求最大值)。然后一一检验其它的解,如果该解大于上界或小于下界,则不用检验可行性,因为它不可能是最优解,否则的话就要检验可行性,如果是可行解,则修改上界或下界,继续检验其它的解,否则不用修改上界或下界,直接检验其它的解。这种方法通过上界或下界来控制是否需要进行可行性检验,提高了效率。但是,要找可行解也得花一定的时间,当约束和变量较多时,工作量异常的大,退一步来说,即使可行解比较容易找到,但其产生的上界太大,或是下界太小,则其过滤的效果也不明显。这是这种方法的缺陷。
3.隐枚举法II
这种方法先把问题转化成标准型,然后按照分枝定界法的思想,尽量少的检验可行解来寻找最优解。这种方法比较麻烦,我在这里也描述不清楚,过几天理解透了再来写这一部分。
4.隐枚举法III
这是在程冬时,张声年在江西电力职业技术学院学报上发表的一篇文章《关于0-1型整数规划的若干问题》中提出来的,大致的思路是:把所有可能的解都代入目标函数算出值,然后把这些目标函数值进行排序,如果是求最大值,则降序排列,如果是求最小值则升序排列。然后按这个顺序一个一个的检验对应的解的可行性,当碰到第一个可行解时即得到最优解,因为其它的解不会优于此解了。这种方法的缺陷也是明显的,如果变量为N个,则需求2的N次个目标函数值,然后还要进行排序,这又是项工作量很大的工作,再一个就是,如果排序结果是把可行解排在最后一个,那还是得进行2的N次方次检验。
4.启发式算法
遗传算法,蚁群算法等都可归于此类。这都是随机算法,说白了就是听天由命,即使算出了最优解你也不知道是不是最优解,因为此类算法的收敛性都只是依概率收敛的,真正在算的过程中是否已得到最优只有上帝知道。启发式算法是万不得已的情况下才使用的,我们用这种方法只能保证得到的解比其它方法得到的好,但不一定就说得到了最优了。
0-1规划的求解方法还在研究之中,也许你会发现一个有效的算法。

Ⅵ 线性规划问题的解题步骤

解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解,它的步骤如下:

(1)设出未知数,确定目标函数。

(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。

(3)由目标函数称为该线性规划问题的可行解。

(2)可行解集/可行解域:满足约束条件的可行解的全体称为可行解集,在平面上,所有可行解的点的集合称为可行解域。

(3)最优解:在可行解集中,使目标函数达到最优值的可行解称为最优解。

网络-线性规划

Ⅶ 单纯形法计算线性规划的步骤

单纯形法计算线性规划的步骤:
(1)把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。
(2)若基本可行解不存在,即约束条件有矛盾,则问题无解。
(3)若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
(4)按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
(5)若迭代过程中发现问题的目标函数值无界,则终止迭代。
用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。现在一般的线性规划问题都是应用单纯形法标准软件在计算机上求解,对于具有10^6个决策变量和10^4个约束条件的线性规划问题已能在计算机上解得。

Ⅷ 请问多目标线性规划的常用求解算法有哪些呢

多目标决策方法

多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。决策分析是在系统规划、设计和制造等阶段为解决当前或未来可能发生的问题,在若干可选的方案中选择和决定最佳方案的一种分析过程。在社会经济系统的研究控制过程中我们所面临的系统决策问题常常是多目标的,例如我们在研究生产过程的组织决策时,既要考虑生产系统的产量最大,又要使产品质量高,生产成本低等。这些目标之间相互作用和矛盾,使决策过程相当复杂使决策者常常很难轻易作出决策。这类具有多个目标的决策总是就是多目标决策。多目标决策方法现已广泛地应用于工艺过程、工艺设计、配方配比、水资源利用、环境、人口、教育、能源、企业高速武器系统设计和评价、经济管理等领域。
多目标决策主要有以下几种方法:
(1)化多为少法:将多目标问题化成只有一个或二个目标的问题,然后用简单的决策方法求解,最常用的是线性加权和法。
(2)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
(3)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(6)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(7)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(8)多目标群决策和多目标模糊决策等。

Ⅸ 解线性规划数学模型有哪些方法

模型建立:
从实际问题中建立数学模型一般有以下三个步骤;
1.根据影响所要达到目的的因素找到决策变量;
2.由决策变量和所在达到目的之间的函数关系确定目标函数;
3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。
线性规划难题解法
所建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。
2、目标函数是决策变量的线性函数,根据具体问题可以是最大化或最小化,二者统称为最优化。
3、约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
例:
生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获利最多?
解:
1、确定决策变量:设x1、x2分别为产品Ⅰ、Ⅱ的生产数量;
2、明确目标函数:获利最大,即求2x1+3x2最大值;
3、所满足的约束条件:
设备限制:x1+2x2≤8
原材料A限制:4x1≤16
原材料B限制:4x2≤12
基本要求:x1,x2≥0
用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:
max z=2x1+3x2
s.t. x1+2x2≤8
4x1≤16
4x2≤12
x1,x2≥0
解法
求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。

热点内容
二级c语言技巧 发布:2025-01-13 07:54:37 浏览:2
自动充值脚本 发布:2025-01-13 07:48:02 浏览:19
越容易压缩 发布:2025-01-13 07:37:37 浏览:558
ecstore数据库 发布:2025-01-13 07:29:43 浏览:297
手机设置密码忘记了怎么解开 发布:2025-01-13 07:28:29 浏览:21
存储卡交流 发布:2025-01-13 07:16:06 浏览:984
php字符串浮点数 发布:2025-01-13 07:15:28 浏览:999
python排序cmp 发布:2025-01-13 07:09:04 浏览:73
云脚本精灵 发布:2025-01-13 07:03:27 浏览:619
高维访问 发布:2025-01-13 07:03:23 浏览:976