算法入门
A. 零基础自学算法看什么书
既然是自学,途径无非就是看书和看视频两种途径。这些资料,今天已经非常的丰富了。每个人都可以有很多选择。
但这就带来另一个问题:究竟该从什么书,什么视频开始呢?
巧了!!我用过一个学习算法的网站,只适合小白。哈哈。
你可以搜索 1024fun乐学编程 让后学习其中的乐学编程课程
就是,免费!,缺点就是只有基础课程。你去看一下。
B. 计算机专业学算法的都学些什么算法,有什么书可以看的学的话需要些什么基础的
计算机算法非常多的
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。
C. 算法竞赛入门经典怎么样
从书本的编排上,就可以看出作者的确是用心在写书。比如讲,动态规划一章,在介绍各种动态规划基本问题时,我目前见过的所有算法书都只给出最优值的那个值,而没有考虑到竞赛或其它需要时,对答案构造的需要。比如,如果一个题目真要你输出字典序列最小的方案,可能会难倒很多人。而真正靠初学者自己要来领悟这样一些方法,确实是需要不少时间的。诸如此类的用心书中还有很多,作者一个个算法娓娓道来,却又在初学者容易犯错的地方给一些提示,感觉很好。 更难能可贵的是,作者作为ICPC WORLD FINAL银牌得主,信息学国家队教练,丝毫没有架子,不会像高数、数分书上那么多“显然”、“很容易看出”之类直接来一个例子。但是,这并不说明行笔罗嗦,相反,更体现作者心思细腻,真去PKU做两个题目就会发现,很多时候算法正确是一方面,细节上不出错又是一个方面,把"=="打成"="然后调一个多小时代码,绝对是初学语言的时候常犯的错误。 但是,整本书没有任何参考书目附于附录,一来是对被参考书籍的作者的不尊重,二来不利于读者进一步阅读(比如动态规划一章之后的习题推荐,基本全部来自于《programming challenge》一书的习题)。 总起来说,本书绝对值得一读,即使是有算法基础的ACMER||OIer 期待后续两本着作问世
D. 推荐一些关于算法的书籍
1、数据结构与算法分析:C语言描述(适合入门)
这本书相对于算法导论要简单一些,更适合入门。算法导论其实有比较强的理论性,看起来比较吃力。
《数据结构与算法分析:C语言描述》内容简介:书中详细介绍了当前流行的论题和新的变化,讨论了算法设计技巧,并在研究算法的性能、效率以及对运行时间分析的基础上考查了一些高级数据结构,从历史的角度和近年的进展对数据结构的活跃领域进行了简要的概括。由于《数据结构与算法分析:C语言描述(原书第2版)》选材新颖,方法实用,题例丰富,取舍得当。《数据结构与算法分析:C语言描述》的目的是培养学生良好的程序设计技巧和熟练的算法分析能力,使得他们能够开发出高效率的程序。从服务于实践又锻炼学生实际能力出发,书中提供了大部算法的C程序和伪码例程。
2、算法设计与分析基础(适合入门)
作者基于丰富的教学经验,开发了一套对算法进行分类的新方法。这套方法站在通用问题求解策略的高度,能对现有的大多数算法都能进行准确分类,从而使本书的读者能够沿着一条清晰的、一致的、连贯的思路来探索算法设计与分析这一迷人领域。本书作为第2版,相对第1版增加了新的习题,还增加了“迭代改进”一章,使得原来的分类方法更加完善。
3.0、算法引论:一种创造性方法(适合入门)
和普通的算法书不同,这本书从创造性的角度出发——如果说算法导论讲的是有哪些算法,那么算法引论讲的就是如何创造算法。结合前面的算法设计与分析基础,这本书把能解决的算法问题数量扩大了一个数量级。
3.1 算法竞赛 | 信息学奥赛一本通(算竞入门)
AlphaWA同学推荐的入门书籍,网上没有PDF版本,自己去淘宝买喽。
3.2 算法竞赛 | 算法竞赛进阶指南(算竞进阶)
E. 有哪些学习算法的入门书籍
原理 入门:《编码:隐匿在计算机软硬件背后的语言》
这是一本讲述计算机工作原理的书。
不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。
不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟,都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。
实战 晋升:《编程珠玑》
正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师 Jon Bentley 以其独有的洞察力和创造力,从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”,成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏,最终结集为两部不朽的计算机科学经典名着,影响和激励着一代又一代程序员和计算机科学工作者。
本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。
永恒的经典:《代码大全》
Steve McConnell 的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。
现在,作者将这本经典着作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。
无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。
F. 如何成为算法工程师 推荐几本算法入门书籍
是哪方面的算法工程师?
信号处理算法:书比较多,可以看看《数字信号处理》
体征(医疗)信号算法:先要读懂医疗的电信号,先看看医疗电信号的书
自动化控制算法:
轨迹、速度规划相关,资料很多,直接读论文更快
控制算法相关的,可以看看《自动控制原理》
机器人运动学、动力学相关的,可以看看李泽湘的《机器人数学导论》
无人机相关的,也可以看《机器人数学导论》,搜李泽湘学生的论文,看看《李群和李代数》,了解旋量理论,看一下PX4的开源代码
机器学习/深度学习算法:李航的《统计学习方法》、搜一下ufldl文档看一下、还有周志华的西瓜书
通用的可以看看《高等代数》、《最优化原理》和《常微分》
G. 想学习算法,如何入门
入门的话推荐两本书:《算法图解》和《大话数据结构》,
另外推荐一门视频课程《300分钟搞定数据结构与算法》,不想花时间看书的同学,建议看这个视频课程,是关于数据结构和算法很好的一个课程。
H. C语言入门算法
这是对的,首先P=1,I=2,然后P乘以I,将乘积结果放在P中,这时候P的值变了,即新的P成为了P乘以I的值,即P=1x2=2,然后让I的数值加1,此时I=2+1=3了,然后让新的P的数值即P=2乘以新的I的值,再把这个新的值赋予P,即新的P等于原来的P=2乘以了新的I=3,所以P=2x3=6了,即算出了P=1x2x3的结果,以此类推,让I逐渐加1,直到I=5,就可以算出P=1x2x3x4x5的数值了。那个箭头是赋予数值的意思,即把PXI的值赋予P,还有不懂得再联系~~
I. 初学者如何学算法
先看看两本书,一本数据结构,一本离散数学。。。看完以后你就会。。。。