当前位置:首页 » 操作系统 » 数据库的逻辑模型有

数据库的逻辑模型有

发布时间: 2022-06-10 06:02:28

A. 数据模型是由哪三个部分组成

数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。

1、数据结构

主要描述数据的类型、内容、性质以及数据间的联系等,是目标类型的集合。目标类型是数据库的组成成分,一般可分为两类:数据类型、数据类型之间的联系。

数据类型如DBTG(数据库任务组)网状模型中的记录型、数据项,关系模型中的关系、域等。联系部分有DBTG网状模型中的系型等。数据结构是数据模型的基础,数据操作和约束都基本建立在数据结构上。不同的数据结构具有不同的操作和约束。

2、数据操作

数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。它是操作算符的集合,包括若干操作和推理规则,用以对目标类型的有效实例所组成的数据库进行操作。

3、数据约束

数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。它是完整性规则的集合,用以限定符合数据模型的数据库状态,以及状态的变化。

约束条件可以按不同的原则划分为数据值的约束和数据间联系的约束;静态约束和动态约束;实体约束和实体间的参照约束等。

(1)数据库的逻辑模型有扩展阅读:
层次类型:

数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。

1、概念模型

概念模型是一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题。

概念模型用于信息世界的建模,一方面应该具有较强的语义表达能力,能够方便直接表达应用中的各种语义知识,另一方面它还应该简单、清晰、易于用户理解。

2、逻辑模型

逻辑模型是一种面向数据库系统的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、层次数据模型(Hierarchical Data Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。

3、物理模型

物理模型是一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与操作系统和硬件有关。

每一种逻辑数据模型在实现时都有其对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作由系统自动完成,而设计者只设计索引、聚集等特殊结构。

B. 数据库主要有哪几种数据模型

一. 数据模型的分类:

最常用的数据模型是概念数据模型和结构数据模型。

1.概念数据模型:面向用户的,按照用户的观点进行建模。

2.结构数据模型:面向计算机系统的,用于DBMS的实现。

二.E-R图:

1.E-R实体联系图是直观表示概念模型的工具,其中包含了实体、联系、属性三个成分,联系的方 法为一对一(1:1)、一对多(1:N)、多对多(M:N)三种方式。

2.E-R模型图,既表示实体,也表示实体之间的联系,是现实世界的抽象,与计算机系统没有关系, 是可以被用户理解的数据描述方式。

三.层次模型:

1.层次模型采取树形结构表示数据与数据之间的关系。

2.层次模型不能直接表示多对多的联系。

四.网状模型:

1.用网络结构表示数据与数据之间的联系的模型。

2.网状模型子节点和父节点联系不唯一,需要为联系命名。

五.关系模型:

1.关系模型是目前最常见的数据模型之一,主要采用表格结构表达实体集以及实体之间的联 系。

2.关系是一张表,关系数据模型由若干个表组成。

C. 数据库和逻辑模型有( )、( )、( )和( )等四种。

1、概念模型(分三种:1:场模型:用于描述空间中连续分布的现象;2:对象模型:用于描述各种空间地物;3:网路模型:可以模拟现实世界中的各种网络)
2、逻辑数据模型(常用的分:矢量数据模型,栅格数据模型和面向对象数据模型等)
3、物理数据模型(物理数据模型是指概念数据模型在计算机内部具体的存储形式和操作机制,即在物理磁盘上如何存放和存取,是系统抽象的最底层。)

D. 数据库逻辑模型类型

数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。

1.2.1 层次模型

若用图来表示,层次模型是一棵倒立的树。在数据库中,满足以下条件的数据模型称为层次模型: ① 有且仅有一个结点无父结点,这个结点称为根结点; ② 其他结点有且仅有一个父结点。 根据层次模型的定义可以看到,这是一个典型的树型结构。结点层次从根开始定义,根为第一层,根的子结点为第二层,根为其子结点的父结点,同一父结点的子结点称为兄弟结点,没有子结点的结点称为叶结点。

1.2.2 网状模型

在现实世界中,事物之间的联系更多的是非层次关系的,用层次模型表示非树型结构是很不直接的,网状模型则可以克服这一弊病。网状模型是一个网络。在数据库中,满足以下两个条件的数据模型称为网状模型。 ① 允许一个以上的结点无父结点; ② 一个结点可以有多于一个的父结点。 从以上定义看出,网状模型构成了比层次结构复杂的网状结构。

1.2.3 关系模型

在关系模型中,数据的逻辑结构是一张二维表。
在数据库中,满足下列条件的二维表称为关系模型:
① 每一列中的分量是类型相同的数据;
② 列的顺序可以是任意的;
③ 行的顺序可以是任意的;
④ 表中的分量是不可再分割的最小数据项,即表中不允许有子表;
⑤ 表中的任意两行不能完全相同。

关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro等。

E. 数据库逻辑模型

数据库关系模型(数据库逻辑模型)是将数据概念模型转换为所使用的数据库管理系统(DBMS)支持的数据库逻辑结构,即将E-R图表示成关系数据库模式。数据库逻辑设计的结果不是唯一的,需利用规范化理论对数据库结构进行优化。

在关系模型中,数据库的逻辑结构是一张二维表。在数据库中,满足下列条件的二维表称为关系模型:

1)每列中的分量是类型相同的数据;

2)列的顺序可以是任意的;

3)行的顺序可以是任意的;

4)表中的分量是不可再分割的最小数据项,即表中不允许有子表;

5)表中的任意两行不能完全相同。

由此可见,有序的航空物探测量剖面数据不满足数据库关系模型条件第3条“行的顺序可以是任意的”,因此,不能简单地直接利用关系数据库(如Oracle,SQL Server,Sybase等)来管理剖面数据,需将数据在数据库中的存储方式改为大字段存储,确保不因数据库数据的增加和删除等操作改变剖面数据有序特性。

一、大字段存储

(一)大字段存储技术

大字段LOB(Large Object)技术是Oracle专门用于存放处理大对象类型数据(如多媒体材料、影像资料、文档资料等)的数据管理技术。LOB包括内部的和外部的两种类型。内部LOB又分CLOB(字符型)、BLOB(二进制型)等3种数据类型,其数据存储在数据库中,并且支持事务操作;外部LOB只有BFILE类型,其数据存储在操作系统中,并且不支持事务操作。LOB存放数据的长度最大可以达到4G字节,并且空值列(没有存放数据)不占空间(图2-6)。

图2-6 大字段存储示意图

由于外部LOB存放在操作系统文件中,其安全性比内部LOB差一些。此外,大字段的存储支持事务操作(批量提交和回滚等),而外部LOB不支持事务操作。所以,航空物探测量剖面数据采用BLOB来存储。对于BLOB类型,如果数据量小于4000字节,数据库通常采用行内存储,而数据量大于4000字节采用行外存储。分析航空物探测量剖面数据,每个场值数据占4个字节(单精度),目前航磁数据采样率为10次/s,4000字节只能存储100s数据;一般情况下航空物探测量每条测线飞行时间至少在10min以上,每条测线数据量远远大于4000字节。所以,航空物探测量剖面数据采用行外存储方式,即大字段列指定“Disable Storage In Row”的存储参数。

由于大字段类型长度可变,最大可到4G。假设测线飞行时间为T,场值采样率为n次/s,测线场值数据量为4Tn,所以有4Tn≤4G。单条测线飞行时间T不会超过10h(36000s,航空物探测量1架次至少飞行1个往返2条测线),则场值的采样率n≤4G/4T=4×1024×1024×1024/4×36000次/s=29826次/s。采用大字段来存储测量数据,不仅能够减少数据表的记录数,提高查询效率,而且使得采样率的扩展不受限制。

(二)大字段存储技术应用

由于航空物探数据的数据量较大,现有的航磁测量数据按基准点方式(点存储)存储可达几亿个数据记录。若按磁场数据采样点存储方式(简称“场值存储方式”),则记录条数=(磁场数据采样率/坐标采样率)点存储方式的记录数,达几十亿条数据记录,且随着数据采样率的扩展、测点的加密,航空物探测量数据量随着时间的推移呈现快速增长之势。显然,如果采用常规的表结构来存储,势必造成数据的存储、管理、检索、浏览和提取都非常困难。另一方面,从航空物探专业应用需求来说,很少对单个测点的场值数据进行运算、分析等操作,一般至少是对一条测线或以上测线,多数时候是需要对整个测区的场值数据进行化极、上延、正反演拟合等。

因此,在航空物探数据库表结构设计时,改变过去将基准点或场值点数据记录作为数据库最小管理对象的理念,采用了大字段存储技术,将测线作为数据库最小管理对象,将测线上的测量数据,如坐标数据和磁场、重力场数据分别存储在相应大字段中。在航空物探数据库建设中,大量采用数据库的大字段存储技术(详见《航空物探信息系统数据库结构设计》)。

(三)大字段存储效率

以航磁测量数据为例分析大字段存储技术优势。如果以场值存储方式存储测线数据,则每条记录包含架次号、测线号、基准号、地理坐标、投影坐标、磁场数据等,由于坐标数据采样率2次/s,磁场数据采样率10次/s,每5个磁场数据中,只有第1个磁场数据有坐标数据,其他4个坐标数据是内插出来,因此在测线记录中会产生大量冗余的数据坐标数据。采用点存储方式存储的测线数据记录数等于线上基准点数,若采用大字段存储方式,一条测线数据只存储为1条数据记录(图2-7),一般一条测线的测点数近万个,甚至更多,可见采用大字段存储大大减少测线数据存储记录数,提高数据的存取效率。

以某测区的两条航迹线为例,分别采用3种方式测试数据库的数据存储效率。磁场数据的采样率10次/s,坐标数据采样率2次/s,两条测线上共有基准点8801个。以场值方式存储先内插坐标信息,使得每个场值数据都拥有自己的坐标,然后存入数据库,共有数据记录44005条,写入数据库时间为57.22s,读取时间为1.03s。第二种方式是以采样点的方式进行存储,共有8801条记录,写入数据库时间为9.47s,读取需要0.91s。第三种方式是以大字段的形式存储,只有2条记录,写入数据库1.03s,读取时间为0.44s(表2-2)。大字段数据存储记录数最少,存取效率最高。用整个测区数据测试效果更加明显。

表2-2 三种数据存储方法的存取效率比较

图2-7 大字段存储方式示意图

二、联合主键

主外键是关系型数据库建立表间关系的核心。在航空物探空间数据库建设过程中,要素类与要素类之间、要素类与对象类之间,以及对象类与对象类之间的关系的描述有3种形式,即拓扑关系——描述要素类与要素类之间结点、邻接和联通关系;叠加关系——描述要素类与要素类之间的相交、包含与分类关系;隶属关系——描述对象类与对象类之间的派生关系。前两种关系是采用空间数据模型建立的关系,而隶属关系是通过主键建立的对象类与对象类之间的关系。在建立一对一、一对多的表间关系时,需要在整个数据库表中确定具有唯一性的一个字段作为主键(主关键字)。

按照传统的航空物探数据的档案管理模式,每个项目分配一个自然数作为档案号,项目的所有资料均与此档案号相联系。勘查项目和科研项目的档案号是独立编号的,且均从001开始。加之人工管理的原因,存在1个项目2个档案号和2个项目1个档案号的情况,因此现行的档案号与项目之间的对应关系不具备唯一性,不能作为项目的唯一标识,即不能作为数据库表的主键。项目编号也不能作为数据库表的主键,项目编号也只是近十年的事,以前的项目没有项目编号。

综合考虑上述因素和项目具有分级、分类的特点,提出了构造项目唯一标识码(简称“项目标识”)的方法,并以此码作为数据库表的主键。

项目标识(主键):AGS+项目类别(2位)+项目起始年份(4位)+档案号(6位)

标识含义:AGS——航空物探的缩位代码;

项目类别——2位代码,01代表勘查项目、02代表科研项目;

起始年份—4位代码,项目开始年号;

档案号—6位代码,为了与传统的项目管理方式相衔接,后面3~4位是

项目档案管理模式下的档案号,不足部分补零。

以上15位编码是一级项目的项目标识,二级及其以下级别的项目标识是在上一级项目标识基础上扩展2位数字代码,中间用“.”号隔开,数字为该级项目的序号。项目标识定义为30位编码,适用于六级以内的项目。例如:AGS022004000576.08.04.02,表示该项目为2004年开展的档案号为576的航空物探科研项目(一级项目)的第8课题(二级项目)第4子课题(三级项目)的第2专题。由此可见,该项目标识不仅仅是一个建立表间关系的关键字,同时还表达了不同级别项目间的隶属关系。在系统软件开发时,利用此关系生成了项目的分级树形目录,用户对项目的层次关系一目了然,便于项目查询。

数据库的主键一经确定,相应地需要确定联合主键的组成及其表达方式。所谓联合主键就是数据资料的唯一标识,在一个数据库表中选择2个或者2个以上的字段作为主键。由于航空物探数据绝大部分与项目标识有关,加之数据的种类较多,分类复杂,单凭主键确定数据库表中记录的唯一性,势必需要构建极其复杂的主键,这种方法既不利于主键的数据操作,又会造成大量的数据冗余,合理地使用联合主键技术可以很好地解决资料唯一问题。以项目提交资料为例,提交的资料分为文字类资料、图件类资料和媒体类资料,我们对资料进行分类和编号,例如100代表文字资料(110——World文档,120——PDF文档),200代表图件资料(210——基础地理资料、220——基础地质资料,230——航迹线图,240——剖面图,250——等值线图等),300代表媒体资料(310——PPT文档,320——照片等),第1位(百位)表示该资料的类型,第2~3位表示该类资料的序号。

在数据库管理和项目资料查询时,采用项目标识与资料分类编号作为联合主键(图2-8),可以高效地实现复杂数据的查询。在整个数据库系统中多处(项目查询、数据提取等模块)使用联合主键技术。

图2-8 联合主键实例

三、信息标准化

为了实现数据共享,在航空物探数据库建模过程中,参考和引用了近百个国家信息化标准,编制了4个中心信息化标准和1个图件信息化工作指南。

(一)引用的国家信息化标准

1)地质矿产术语分类代码:地球物理勘查,地球化学勘查,大地构造学,工程地质学,结晶学及矿物学,矿床学,水文地质学,岩石学,地质学等。

2)国家基础信息数据分类与代码,国土基础信息数据分类与代码,地球物理勘查技术符号,地面重力测量规范,地面磁勘查技术规程,地面高精度磁测技术规程,大比例尺重力勘查规范,地理信息技术基本术语,地理点位置的纬度、经度和高程的标准表示法,地名分类与类别代码编制规则。

3)地球空间数据交换格式;数学数字地理底图数据交换格式;数字化地质图图层及属性文件格式。

(二)本系统建立的信息化标准

编写了“航空物探空间数据要素类和对象类划分标准”,“航空物探项目管理和资料管理分类代码标准”,“航空物探勘查分类代码标准”,“航空物探信息系统元数据标准”,“航空物探图件信息化工作指南”,以便与其他应用系统进行信息交换,实现数据库资料共享。

航空物探空间数据要素类和对象类划分标准:根据物探方法、数据处理过程以及推断解释方法和过程,把与GIS有关的数据划分为不同类型的要素类-对象类数据,按专业、比例尺、数据内容对要素类和对象类进行统一命名,使空间数据库中的每个要素类和对象类的命名具有唯一性,防止重名出现。规定要素类-对象类数据库表结构及数据项数值类型。

航空物探项目管理和资料管理分类代码标准:规定了航空物探项目管理和资料管理的相关内容,包括航空物探勘查项目和科研项目的项目立项、设计、实施、成果、评审、资料汇交等项目管理的全过程中的内容,以及项目成果资料和收集资料的归档、发送、销毁、借阅等资料管理与服务过程中的内容和数据项代码。

航空物探勘查分类代码标准:在“地质矿产术语分类代码地球物理勘查”(国家标准GB/T9649.28—1998)增加了航磁、航重专业方面所涉及的数据采集、物性参数、方法手段、仪器设备、资料数据解释及成图图件等内容和数据项代码。

航空物探信息系统元数据标准:规定了航空物探空间数据管理与服务的元数据(数据的标识、内容、质量、状况及其他有关特征)的内容。

四、航迹线数据模型

(一)航迹线模型的结构

航空物探测量是依据测量比例尺在测区内布置测网(测线和切割线)。当飞机沿着设计的测线飞行测量时,航空物探数据收录系统按照一定的采样率采集采样点的地理位置、高度和各种地球物理场信息。采用属性数据分置的方法,将测线地理位置信息从航空物探测量数据中分离出来,形成航迹线要素类表,在此表中只存储与航迹线要素类有关的数据,如项目标识、测区编号、测线号、测线类型(用于区分测线、切割线、不同高度线、重复线等)、坐标、高度值等;将航迹线的对象类数据(磁场、重力场基础数据)分别以大字段形式存储在各自的二维表中,它们共享航迹线,解决了多源有序不同采样率的航空物探测量数据的数据存储问题,在满足要素类空间查询的同时,统一数据的存储方式(图2-9)。航迹线要素类隶属于测区要素类,它们之间为空间拓扑(包含)关系。测区从属于勘查项目,每个勘查项目至少有一个测区,它们之间为1对多关系。有关项目信息存放在项目概况信息对象类表中,各种表之间通过项目标识进行联接。

图2-9 航迹线数据模型结构

(二)航迹线的UML模型

统一建模语言UML(Unified Modeling Language)是一种定义良好、易于表达、功能强大且普遍适用的建模语言。它溶入了软件工程领域的新思想、新方法和新技术。UML是面向对象技术领域内占主导地位的标准建模语言,成为可视化建模语言的工业标准。在UML基础上,ESRI定义了空间数据库建模的ArcGIS包、类库和扩展原则。

图2-10 与航迹线有关的数据库表逻辑模型结构图

在确定航迹线数据模型后,以它为基础,使用UML完成与航迹的有关的项目概况信息、测区信息、原始数据等数据库表逻辑模型设计(图2-10)。

由UML模型生成Geodatabase模式时,模型中的每个类都对应生成一个要素类或对象类。类的属性映射为要素类或对象类的字段。基类属性中包含的字段,在继承类中不需重复创建。例如,每个类都包括项目标识等字段,可以创建一个包含公共属性的基类,其他类从该类继承公共的属性,而无需重复建基类中包含的属性。因为基类没有对应的要素类或对象类,所以将基类设置为抽象类型。要素类之间的关系采用依赖关系表示。

五、数据库逻辑模型

关系数据库的逻辑结构由一组关系模式组成,因而从概念结构到关系数据库逻辑结构的转换就是将概念设计中所得到的概念结构(ER图)转换成等价的UML关系模式(图2-11)。在UML模型图中,要素数据集用Geodatabase工作空间下的静态包表示。要素集包不能互相嵌套,为了容易组织,在生成物理模型后,在要素数据集包中自定义嵌套。要素数据集与空间参考有关,但是空间参考不能在UML中表达。要素类和二维表都是以类的形式创建的,区别是要素类继承Feature Class的属性,而二维表继承Object属性。为了表达每种元素的额外属性,比如设置字符型属性字段的字符串长度,设置要素类的几何类型(点、线或面)需要使用Geodatabase预定义的元素标记值。

图2-11 逻辑设计关系转换

基于航空物探数据的内在逻辑关系进行分析,使用统一建模语言(UML)构建数据实体对象间的关系类,定义了航空物探数据库的逻辑模型(图2-12)。

F. 数据库主要的模型有哪些

数据库主要的模型有:层次结构模型、网状结构模型、关系结构模型。

G. 目前最常用的三种数据模型及其特点是什么

目前最常用的三种数据模型为层次模型、网状模型和关系模型。

一、层次模型

层次模型将数据组织成一对多关系的结构,层次结构采用关键字来访问其中每一层次的每一部分。

层次模型发展最早,它以树结构为基本结构,典型代表是IMS模型。

优点是存取方便且速度快;结构清晰,容易理解;数据修改和数据库扩展容易实现;检索关键属性十分方便。

二、网状模型

网状模型用连接指令或指针来确定数据间的显式连接关系,是具有多对多类型的数据组织方式。

网状数据模型通过网状结构表示数据间联系,开发较早且有一定优点,目前使用仍较多,典型代表是 DBTG模型。

优点是能明确而方便地表示数据间的复杂关系。

三、关系模型

关系模型以记录组或数据表的形式组织数据,以便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法。

优点在于结构特别灵活,概念单一,满足所有布尔逻辑运算和数学运算规则形成的查询要求;能搜索、组合和比较不同类型的数据;增加和删除数据非常方便。

(7)数据库的逻辑模型有扩展阅读:

数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。

1、概念模型(Conceptual Data Model),是一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段。

2、逻辑模型(Logical Data Model),是一种面向数据库系统的模型,是具体的DBMS所支持的数据模型。

3、物理模型(Physical Data Model),是一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与操作系统和硬件有关。

H. 面向数据库中数据逻辑结构的数据模型有(   )。

A,C,D
面向数据库中数据逻辑结构的数据模型,主要分为关系模型、层次模型、网状模型。故选ACD。

I. 数据库主要有哪些模型这些模型的特点是什么

  1. 两大类数据模型:数据模型分为2类(分属2个不同的层次,在开发和使用数据库中使用不同的模型)。

  2. 概念模型,也称信息模型,它是按用户的观点来对数据和信息建模,用于数据库设计。

  3. 逻辑模型和物理模型,逻辑模型主要包括:网状模型、层次模型、关系模型、面向对象模型等,按计算机系统的观点对数据建模,用于DBMS实现。

  4. 物理模型,是对数据最底层的抽象,描述数据在系统内部的表示方式和存取方法,在磁盘或磁带上的存储方式和存取方法。

  5. 概念模型:信息世界中的基本概念。

  6. 用途:数据库设计人员和用户之间进行交流的语言。但要考E-R图!

  7. 最常用的数据模型:非关系模型,有层次模型和网状模型;关系模型;面向对象模型、对象关系模型。

J. 在数据库系统中,常用的数学模型主要有那四种呢

1、静态和动态模型

静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用系统传递函数是动态模型是从描述系统的微分方程变换而来。

2、分布参数和集中参数模型

分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。

3、连续时间和离散时间模型

模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。

4、参数与非参数模型

用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到响应,通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。

(10)数据库的逻辑模型有扩展阅读:

数学模型建模过程

1、模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

2、模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3、模型建立

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

4、模型求解

利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

5、模型分析

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

6、模型检验

将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

热点内容
突破服务器ip限制 发布:2025-01-11 17:11:23 浏览:817
支付宝上传凭证 发布:2025-01-11 17:10:29 浏览:875
怎么打开行李箱的密码锁 发布:2025-01-11 17:09:51 浏览:591
苹果怎么删除id账号和密码 发布:2025-01-11 17:09:50 浏览:782
7z解压很慢 发布:2025-01-11 16:51:23 浏览:941
电脑改文档服务器 发布:2025-01-11 16:41:14 浏览:869
编译汇编语言实例 发布:2025-01-11 16:36:55 浏览:670
海康ntp校时服务器地址 发布:2025-01-11 16:34:35 浏览:743
服务器运行超时怎么办 发布:2025-01-11 16:34:32 浏览:299
人妖迅雷种子ftp 发布:2025-01-11 16:33:04 浏览:916