当前位置:首页 » 操作系统 » omp算法

omp算法

发布时间: 2022-01-10 19:10:10

1. OOMP算法代码

1. 信号的稀疏表示(sparse representation of signals)
给定一个过完备字典矩阵,其中它的每列表示一种原型信号的原子。给定一个信号y,它可以被表示成这些原子的稀疏线性组合。信号 y 可以被表达为 y = Dx ,或者。 字典矩阵中所谓过完备性,指的是原子的个数远远大于信号y的长度(其长度很显然是n),即n<<k。
2.MP算法(匹配追踪算法)
2.1 算法描述
作为对信号进行稀疏分解的方法之一,将信号在完备字典库上进行分解。
假定被表示的信号为y,其长度为n。假定H表示Hilbert空间,在这个空间H里,由一组向量构成字典矩阵D,其中每个向量可以称为原子(atom),其长度与被表示信号 y 的长度n相同,而且这些向量已作为归一化处理,即|,也就是单位向量长度为1。MP算法的基本思想:从字典矩阵D(也称为过完备原子库中),选择一个与信号 y 最匹配的原子(也就是某列),构建一个稀疏逼近,并求出信号残差,然后继续选择与信号残差最匹配的原子,反复迭代,信号y可以由这些原子来线性和,再加上最后的残差值来表示。很显然,如果残差值在可以忽略的范围内,则信号y就是这些原子的线性组合。如果选择与信号y最匹配的原子?如何构建稀疏逼近并求残差?如何进行迭代?我们来详细介绍使用MP进行信号分解的步骤:[1] 计算信号 y 与字典矩阵中每列(原子)的内积,选择绝对值最大的一个原子,它就是与信号 y 在本次迭代运算中最匹配的。用专业术语来描述:令信号,从字典矩阵中选择一个最为匹配的原子,满足,r0 表示一个字典矩阵的列索引。这样,信号 y 就被分解为在最匹配原子的垂直投影分量和残值两部分,即:。[2]对残值R1f进行步骤[1]同样的分解,那么第K步可以得到:
, 其中 满足。可见,经过K步分解后,信号 y 被分解为:,其中。
2.2 继续讨论
(1)为什么要假定在Hilbert空间中?Hilbert空间就是定义了完备的内积空。很显然,MP中的计算使用向量的内积运算,所以在在Hilbert空间中进行信号分解理所当然了。什么是完备的内积空间?篇幅有限就请自己搜索一下吧。
(2)为什么原子要事先被归一化处理了,即上面的描述。内积常用于计算一个矢量在一个方向上的投影长度,这时方向的矢量必须是单位矢量。MP中选择最匹配的原子是,是选择内积最大的一个,也就是信号(或是残值)在原子(单位的)垂直投影长度最长的一个,比如第一次分解过程中,投影长度就是。,三个向量,构成一个三角形,且和正交(不能说垂直,但是可以想象二维空间这两个矢量是垂直的)。
(3)MP算法是收敛的,因为,和正交,由这两个可以得出,得出每一个残值比上一次的小,故而收敛。
2.3 MP算法的缺点
如上所述,如果信号(残值)在已选择的原子进行垂直投影是非正交性的,这会使得每次迭代的结果并不少最优的而是次最优的,收敛需要很多次迭代。举个例子说明一下:在二维空间上,有一个信号 y 被 D=[x1, x2]来表达,MP算法迭代会发现总是在x1和x2上反复迭代,即,这个就是信号(残值)在已选择的原子进行垂直投影的非正交性导致的。再用严谨的方式描述[1]可能容易理解:在Hilbert空间H中,,,定义,就是它是这些向量的张成中的一个,MP构造一种表达形式:;这里的Pvf表示 f在V上的一个正交投影操作,那么MP算法的第 k 次迭代的结果可以表示如下(前面描述时信号为y,这里变成f了,请注意):
如果 是最优的k项近似值,当且仅当。由于MP仅能保证,所以一般情况下是次优的。这是什么意思呢?是k个项的线性表示,这个组合的值作为近似值,只有在第k个残差和正交,才是最优的。如果第k个残值与正交,意味这个残值与fk的任意一项都线性无关,那么第k个残值在后面的分解过程中,不可能出现fk中已经出现的项,这才是最优的。而一般情况下,不能满足这个条件,MP一般只能满足第k个残差和xk正交,这也就是前面为什么提到“信号(残值)在已选择的原子进行垂直投影是非正交性的”的原因。如果第k个残差和fk不正交,那么后面的迭代还会出现fk中已经出现的项,很显然fk就不是最优的,这也就是为什么说MP收敛就需要更多次迭代的原因。不是说MP一定得到不到最优解,而且其前面描述的特性导致一般得到不到最优解而是次优解。那么,有没有办法让第k个残差与正交,方法是有的,这就是下面要谈到的OMP算法。

3.OMP算法
3.1 算法描述
OMP算法的改进之处在于:在分解的每一步对所选择的全部原子进行正交化处理,这使得在精度要求相同的情况下,OMP算法的收敛速度更快。
那么在每一步中如何对所选择的全部原子进行正交化处理呢?在正式描述OMP算法前,先看一点基础思想。
先看一个 k 阶模型,表示信号 f 经过 k 步分解后的情况,似乎很眼熟,但要注意它与MP算法不同之处,它的残值与前面每个分量正交,这就是为什么这个算法多了一个正交的原因,MP中仅与最近选出的的那一项正交。
(1)
k + 1 阶模型如下:
(2)
应用 k + 1阶模型减去k 阶模型,得到如下:
(3)

我们知道,字典矩阵D的原子是非正交的,引入一个辅助模型,它是表示对前k个项的依赖,描述如下:
(4)
和前面描述类似,在span(x1, ...xk)之一上的正交投影操作,后面的项是残值。这个关系用数学符号描述:
请注意,这里的 a 和 b 的上标表示第 k 步时的取值。
将(4)带入(3)中,有:
(5)
如果一下两个式子成立,(5)必然成立。
(6)
(7)
令,有

其中。
ak的值是由求法很简单,通过对(7)左右两边添加作内积消减得到:

后边的第二项因为它们正交,所以为0,所以可以得出ak的第一部分。对于,在(4)左右两边中与作内积,可以得到ak的第二部分。
对于(4),可以求出,求的步骤请参见参考文件的计算细节部分。为什么这里不提,因为后面会介绍更简单的方法来计算。
3.2 收敛性证明
通过(7),由于与正交,将两个残值移到右边后求二范的平方,并将ak的值代入可以得到:

可见每一次残差比上一次残差小,可见是收敛的。
3.3 算法步骤
整个OMP算法的步骤如下:

由于有了上面的来龙去脉,这个算法就相当好理解了。
到这里还不算完,后来OMP的迭代运算用另外一种方法可以计算得知,有位同学的论文[2]描述就非常好,我就直接引用进来:

对比中英文描述,本质都是一样,只是有细微的差别。这里顺便贴出网一哥们写的OMP算法的代码,源出处不得而知,共享给大家。

再贴另外一个洋牛paper[3]中关于OMP的描述,之所以引入,是因为它描述的非常严谨,但是也有点苦涩难懂,不过有了上面的基础,就容易多了。

它的描述中的Sweep步骤就是寻找与当前残差最大的内积时列在字典矩阵D中的索引,它的这个步骤描述说明为什么要选择内积最大的以及如何选择。见下图,说的非常清晰。

它的算法步骤Update Provisional Solution中求很简单,就是在 b = Ax 已知 A和b求x, 在x的最小二范就是A的伪逆与b相乘,即:

2. 求omp算法的原理图

是指算法描述吗?

3. 请问压缩感知重构omp算法中的这句代码,a=pinv(D(:,indx(1:j)))*x;广义矩阵和信号的乘积 a是求的什么呢

你对照着这个步骤再看看程序吧~

4. 压缩感知重构OMP算法代码

%A-稀疏系数矩阵
%D-字典/测量矩阵(已知)
%X-测量值矩阵(已知)
%K-稀疏度
function A=OMP(D,X,L)
[n,P]=size(X);
[n,K]=size(D);
for k=1:P
a=[];
x=X(:,k);
resial=x;%残差
indx=zeros(L,1);%索引集
for j=1:L
proj=D'*resial;%D转置与resial相乘,得到与resial与D每一列的内积值
pos=find(abs(proj)==max(abs(proj)));%找到内积最大值的位置
pos=pos(1);%若最大值不止一个,取第一个
indx(j)=pos;%将这个位置存入索引集的第j个值
a=pinv(D(:,indx(1:j)))*x;%indx(1:j)表示第一列前j个元素
resial=x-D(:,indx(1:j))*a;
end
temp=zeros(K,1);
temp(indx)=a;
A(:,k)=temp;%只显示非零值及其位置
end

5. 为什么omp算法比sp算法耗时高

数据结构和算法和编程语言并不重要,无论你学习C,C ++或java,数据结构和算法是相同的。数据结构图书市场是非常大的,基本上都是一样的没有什么大的区别,挑了一系列的什么将成为清华,最好的算法是“引进算法”,但只是一个复印件,不用翻译。 CS南京理工大学,他们有自己的内部的翻译,有的学生,然后借它。
Java的基本都是经典书籍“Java编程思想”(在Java编程思想)和“Java核心技术”JavaCore,开始看第二卷开始javacore还是很合适的。

6. K-SVD和OMP是什么关系

K-svd是一种训练字典的方法,算法里面在求取系数矩阵时要用到omp算法。

7. openmp,这段快排用的是什么算法求分析他的思路

模拟的二叉树排序,你在纸上按这个程序走一遍就清楚了,得到的是一个二叉排序树,左小于根小于右

8. 为什么omp算法不一下选择好几个原子

1. 信号的稀疏表示(sparse representation of signals) 给定一个过完备字典矩阵,其中它的每列表示一种原型信号的原子。
给定一个信号y,它可以被表示成这些原子的稀疏线性组合。
信号 y 可以被表达为 y = Dx ,或者。

9. 稀疏重建中OMP算法为什么用最小二乘法来确定稀疏系数的

这个问题确实不是最小二乘,但也不是A的谱范数,而是等价于A的最小奇异值,这两者不能算完全等价。
如果要编程实现的话取决于A的具体情况。
如果A的阶数比较小的话可以用Jacobi算法来算奇异值分解,再取出最小的那个对应的右奇异向量,目前来讲这个方法精度最高。如果A的阶数比较大并且稀疏的话可以考虑共轭梯度类算法。当然,如果A有更多的信息也要想办法用上。

楼上并不是不懂,不过为什么总是犯一些不大不小的错误呢,我已经见了好几次了,你要注意一下小节。

10. 如何给OMP算法设计一个字典,这个字典会更新

1. 信号的稀疏表示(sparse representation of signals)
给定一个过完备字典矩阵,其中它的每列表示一种原型信号的原子。给定一个信号y,它可以被表示成这些原子的稀疏线性组合。信号 y 可以被表达为 y = Dx ,或者。 字典矩阵中所谓过完备性,指的是原子的个数远远大于信号y的长度(其长度很显然是n),即n<<k。
2.MP算法(匹配追踪算法)
2.1 算法描述
作为对信号进行稀疏分解的方法之一,将信号在完备字典库上进行分解。
假定被表示的信号为y,其长度为n。假定H表示Hilbert空间,在这个空间H里,由一组向量构成字典矩阵D,其中每个向量可以称为原子(atom),其长度与被表示信号 y 的长度n相同,而且这些向量已作为归一化处理,即|,也就是单位向量长度为1。MP算法的基本思想:从字典矩阵D(也称为过完备原子库中),选择一个与信号 y 最匹配的原子(也就是某列),构建一个稀疏逼近,并求出信号残差,然后继续选择与信号残差最匹配的原子,反复迭代,信号y可以由这些原子来线性和,再加上最后的残差值来表示。很显然,如果残差值在可以忽略的范围内,则信号y就是这些原子的线性组合。如果选择与信号y最匹配的原子?如何构建稀疏逼近并求残差?如何进行迭代?我们来详细介绍使用MP进行信号分解的步骤:[1] 计算信号 y 与字典矩阵中每列(原子)的内积,选择绝对值最大的一个原子,它就是与信号 y 在本次迭代运算中最匹配的。用专业术语来描述:令信号,从字典矩阵中选择一个最为匹配的原子,满足,r0 表示一个字典矩阵的列索引。这样,信号 y 就被分解为在最匹配原子的垂直投影分量和残值两部分,即:。[2]对残值R1f进行步骤[1]同样的分解,那么第K步可以得到.

热点内容
上传图片命名规则 发布:2024-11-16 06:28:37 浏览:556
qq阅读上传 发布:2024-11-16 06:27:04 浏览:110
鸿蒙系统与安卓区别在哪里 发布:2024-11-16 06:24:59 浏览:123
安卓手机如何更改信息提示音 发布:2024-11-16 06:12:52 浏览:142
我的世界服务器domc 发布:2024-11-16 06:04:54 浏览:854
object类型java 发布:2024-11-16 06:04:46 浏览:477
骑砍2存储 发布:2024-11-16 06:04:04 浏览:179
nas的监控存储 发布:2024-11-16 05:52:53 浏览:316
phpxml转换 发布:2024-11-16 05:47:10 浏览:955
内网服务器搭建什么公司做 发布:2024-11-16 05:36:24 浏览:594