指纹源码
1. app指纹登录验证怎么实现源码
连续几次指纹识别错误就可以,或者直接按HOME键(包括虚拟HOME键)。
2. 指纹识别源码在android中哪里
在正式使用指纹识别功能之前,有必要先了解一下对称加密和非对称加密的相关内容。
对称加密:所谓对称,就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥是控制加密及解密过程的指令。算法是一组规则,规定如何进行加密和解密。因此加密的安全性不仅取决于加密算法本身,密钥管理的安全性更是重要。因为加密和解密都使用同一个密钥,如何把密钥安全地传递到解密者手上就成了必须要解决的问题。
3. app指纹验证登录怎么实现源码
1)点击手机【设置】,进入后点击【TouchID与密码】。2)接着输入自己设置的【锁屏密码】,最后打开【iTunesStore和AppStore】右边滑块即可。
4. 求基于matlab指纹扫描图像处理的源代码
clear all,close all,clc % 清理工作空间,关闭运行窗口,清理命令窗口
I=imread('Empreinte.bmp'); % 读入图像
imshow(I) % 显示图像
set(gcf,'position',[1 1 600 600]); % 得到图形窗口句柄,设置图形窗口位置
J=I(:,:,1)>160; % 设定阈值为160,进行黑白化处理
imshow(J) % 显示处理后的图像
set(gcf,'position',[1 1 600 600]); % 得到图形窗口句柄,设置图形窗口位置
K=bwmorph(~J,'thin','inf'); % 数学形态学运算,图像细化,~符号代表黑白反色
imshow(~K) % 显示处理后的图像,~符号代表黑白反色
set(gcf,'position',[1 1 600 600]); % 得到图形窗口句柄,设置图形窗口位置
function y=minutie(x)
i=ceil(size(x)/2);
if x(i,i)==0;
y=0;
else
y=sum(x(:)) - 1;
end
fun=@minutie; % 得到函数句柄
L = nlfilter(K,[3 3],fun); % 滤波处理
LTerm=(L==1); % 选择端点
imshow(LTerm) % 显示白色点
LTermLab=bwlabel(LTerm); % 端点标识
propTerm=regionprops(LTermLab,'Centroid'); % 端点区域分析,寻找端点区域中心
CentroidTerm=round(cat(1,propTerm(:).Centroid)); % 端点圆整为整数
imshow(~K) % 显示隆线细化图像
set(gcf,'position',[1 1 600 600]); % 得到当前图形窗口句柄,设置位置
hold on % 在前面的图形窗口继续绘制图像
plot(CentroidTerm(:,1),CentroidTerm(:,2),'ro') % 绘制隆线端点标识,红色圆圈
LBif=(L==3); % 选择分叉点
LBifLab=bwlabel(LBif); % 分叉点标识
propBif=regionprops(LBifLab,'Centroid','Image'); % 区域分析,寻找区域中心
CentroidBif=round(cat(1,propBif(:).Centroid)); % 分叉点圆整为整数
plot(CentroidBif(:,1),CentroidBif(:,2),'go') % 绘制隆线分叉点标识,绿色圆圈
D=6;
Distance=DistEuclidian(CentroidBif,CentroidTerm); % 求端点和分叉点的距离
SpuriousMinutae=Distance<D; % 满足距离小于D的点
[i,j]=find(SpuriousMinutae); % 查找对应像素点
CentroidBif(i,:)=[]; % 去除该分叉点
CentroidTerm(j,:)=[]; % 去除该端点
Distance=DistEuclidian(CentroidBif); % 求两个分叉点的距离
SpuriousMinutae=Distance<D; % 满足距离小于D的点
[i,j]=find(SpuriousMinutae); % 查找对应像素点
CentroidBif(i,:)=[]; % 去除该分叉点
Distance=DistEuclidian(CentroidTerm); % 求两个端点的距离
SpuriousMinutae=Distance<D; % 满足距离小于D的点
[i,j]=find(SpuriousMinutae); % 查找对应像素点
CentroidTerm(i,:)=[]; % 去除该端点
hold off % 结束在前面的图形窗口绘图
imshow(~K) % 显示细化图
hold on % 继续在前面的图形窗口绘图
plot(CentroidTerm(:,1),CentroidTerm(:,2),'ro') % 绘制隆线端点标识,红色圆圈
plot(CentroidBif(:,1),CentroidBif(:,2),'go') % 绘制隆线分叉点标识,绿色圆圈
hold off % 结束在前面的图形窗口绘图
Kopen=imclose(K,strel('square',7)); % 闭合运算
KopenClean= imfill(Kopen,'holes'); % 填充图像中的孔洞
KopenClean=bwareaopen(KopenClean,5); % 开运算
imshow(KopenClean) % 显示处理结果
KopenClean([1 end],:)=0; % 赋值语句
KopenClean(:,[1 end])=0; % 赋值语句
ROI=imerode(KopenClean,strel('disk',10)); % 腐蚀运算
imshow(ROI) % 显示处理结果
imshow(I) % 显示原始图像
hold on % 继续在前面的图形窗口绘图
imshow(ROI) % 显示感兴趣区域
alpha(0.5) % 设置透明度
hold on % 继续在前面的图形窗口绘图
plot(CentroidTerm(:,1),CentroidTerm(:,2),'ro') % 绘制端点标识,红色圆圈
plot(CentroidBif(:,1),CentroidBif(:,2),'go') % 绘制分叉点标识,绿色圆圈
hold off % 结束在前面的图形窗口绘图
[m,n]=size(I(:,:,1)); % 求图像尺寸
indTerm=sub2ind([m,n]; % 从下标得到单精度索引
CentroidTerm(:,1),CentroidTerm(:,2)); % 端点
Z=zeros(m,n); % 全零矩阵
Z(indTerm)=1;
ZTerm=Z.*ROI';
[CentroidTermX,CentroidTermY]=find(ZTerm);
indBif=sub2ind([m,n],CentroidBif(:,1),CentroidBif(:,2)); % 从下标得到单精度索引
Z=zeros(m,n);
Z(indBif)=1;
ZBif=Z.*ROI';
[CentroidBifX,CentroidBifY]=find(ZBif);
imshow(I) % 显示原始图像
hold on % 继续绘图
plot(CentroidTermX,CentroidTermY,'ro','linewidth',2) % 红色圆圈
plot(CentroidBifX,CentroidBifY,'go','linewidth',2) % 绿色圆圈
Table=[3*pi/4 2*pi/3 pi/2 pi/3 pi/4 % 角度查找表
5*pi/6 0 0 0 pi/6
pi 0 0 0 0
-5*pi/6 0 0 0 -pi/6
-3*pi/4 -2*pi/3 -pi/2 -pi/3 -pi/4];
for ind=1:length(CentroidTermX)
Klocal=K(CentroidTermY(ind)-2:CentroidTermY(ind)+2, ...
CentroidTermX(ind)-2:CentroidTermX(ind)+2);
Klocal(2:end-1,2:end-1)=0;
[i,j]=find(Klocal);
OrientationTerm(ind,1)=Table(i,j);
end
dxTerm=sin(OrientationTerm)*5;
dyTerm=cos(OrientationTerm)*5;
figure % 新建窗口
imshow(K) % 显示黑白图
set(gcf,'position',[1 1 600 600]); % 设置图像窗口属性
hold on % 继续绘图
plot(CentroidTermX,CentroidTermY,'ro','linewidth',2) % 红色圆圈
plot([CentroidTermX CentroidTermX+dyTerm]',... % 红色短线
[CentroidTermY CentroidTermY-dxTerm]','r','linewidth',2)
for ind=1:length(CentroidBifX)
Klocal=K(CentroidBifY(ind)-2:CentroidBifY(ind)+2, ...
CentroidBifX(ind)-2:CentroidBifX(ind)+2);
Klocal(2:end-1,2:end-1)=0;
[i,j]=find(Klocal);
if length(i)~=3
CentroidBifY(ind)=NaN;
CentroidBifX(ind)=NaN;
OrientationBif(ind)=NaN;
else
for k=1:3
OrientationBif(ind,k)=Table(i(k),j(k));
dxBif(ind,k)=sin(OrientationBif(ind,k))*5;
dyBif(ind,k)=cos(OrientationBif(ind,k))*5;
end
end
end
plot(CentroidBifX,CentroidBifY,'go','linewidth',2) % 绿色圆圈
OrientationLinesX=[CentroidBifX ...
CentroidBifX+dyBif(:,1);CentroidBifX ...
CentroidBifX+dyBif(:,2);CentroidBifX CentroidBifX+dyBif(:,3)]';
OrientationLinesY=[CentroidBifY
CentroidBifY-dxBif(:,1);CentroidBifY ...
CentroidBifY-dxBif(:,2);CentroidBifY CentroidBifY-dxBif(:,3)]';
plot(OrientationLinesX,OrientationLinesY,'g','linewidth',2) % 绿色短线
MinutiaTerm=[CentroidTermX,CentroidTermY,OrientationTerm];
MinutiaBif=[CentroidBifX,CentroidBifY,OrientationBif];
saveMinutia('John Doe',MinutiaTerm,MinutiaBif); % saveMinutia函数见附件程序
5. 苹果4指纹解锁源代码
苹果4无法指纹解锁
6. 人脸识别的源码,和其他动物或是物体识别的源码会有很大不同吗
理论上相同,实际代码差很多
本质上都是特征点提取
但在一帧图像中,怎么定位特征点,定位哪些特征点,怎么提高速度,怎么提升准确率,这些都需要针对性算法
可以这么说,针对亚洲人和针对欧美人的人脸识别,代码差异都比想象的大很多,更别说跨物种了
7. 急求基于MATLAB指纹识别系统的完整源代码~!
基于MATLAB指纹识别系统俺有你所需要的内容。