当前位置:首页 » 操作系统 » elasticsearch源码

elasticsearch源码

发布时间: 2022-06-06 20:08:08

① solr和elasticsearch对比,有啥差别吗

从两个方面对ElasticSearch和Solr进行对比,从关系型数据库中的导入速度和模糊查询的速度。

单机对比

1. Solr 发布了4.0-alpha,试了一下,发现需要自己修改schema,好处是它自带一个data importer。在自己的计算机上测试了一下,导入的性能大概是:14分钟导入 3092730 条记录,约合 3682条/秒。

2. 3百万条记录的情况下,模糊查询和排序基本都在1秒内返回

3. 刚才的测试,是每个field单独存储,现在修改了一下配置文件,增加了一个Field,所有的field都拷贝一份到text这个field里面去,导入的性能大概是:19分钟导入了3092730 条记录,约合 2713条/秒

4. 3百万条记录的情况下,针对text的模糊查询基本在1秒内返回,但是针对所有记录的排序,大概要2~3秒

5. 使用 elasticsearch 0.19.8,缺省配置,用单任务导入,导入性能是:20分钟导入了3092730 条记录,约合2577条/秒

6. 3百万条记录的情况下,查询基本上在1秒内返回,但是模糊查询比较慢,第一次要10秒,后来大概要1~3秒。加上排序大概需要5秒,整体排序基本100ms

查询及排序的指令:

{

"query": {

"query_string": {

"query": "*999*"

}

},

"sort": [

{

"TIME_UP": {

"order": "asc"

}

}

]

}

7. Es0.19.8,用两个任务导入,导入性能是:13分钟导入了3092730 条记录,约合3965条/秒

8. Solr全部建好索引后,占用磁盘空间是1.2G,es占用磁盘空间是4G

单机对比2

在一台Intel i7,32G内存的机器上,重新跑这两个的对比。不过有个重大的区别在于,Solr是在这台性能很好的机器上跑,而es的导入进程则是在一台Intel 四核 2.5G,4G内存的机器上跑的,也许会有性能的差异。ES版本0.19.8,Solr版本4.0-ALPHA。

1. Solr的导入性能:3400万条记录,用时62分钟,平均9140条/秒,占用空间12.75G

2. 使用 *999* 这样的模糊查询,3秒以内返回,稍长一点的查询条件 *00100014*,也是2~3秒返回

3. Es的导入性能(设置Xmx为10G):3400万条记录,用时40分钟,平均14167条/秒,占用空间33.26G,客户端采用4个并发。

4. 使用 *999* 这样的模糊查询,9秒返回,稍长一点的查询条件 *00100014*,11.8秒返回

5. 如果不是针对所有字段查询,而是针对某个特定字段,比如 SAM_CODE: *00100014*,那么也是1秒以内返回。

6. 结论:es的查询效率也可以很高,只是我们还不会用。

7. 结论2:es有个设置是把所有字段放一块的那个,缺省是放一起,但是不知道为什么没起到应有的作用。

备注:

1. Solr第一次的那个内存使用的是缺省设置,这次改为10G,结果导入性能反而变差了,400万条记录,用了8分钟,平均8333条/秒,不知道为什么。

2. 改回缺省的内存配置,导入速度仍然慢。

3. 重启Linux,用10G的内存配置,再导入,5030万条记录,用时92分,约9112条/秒,说明导入速度和内存配置没有大差别

4. 在10G配置的情况下,检索速度也差别不大。

5. 为了搞清楚lucene4.0和solr4.0的进步有多大,下载了solr3.6.1,所幸的是4.0的配置文件在3.6.1上也可以用,所以很快就搭起来进行测试,导入性能为:3400万条记录,用时55分钟,约10303条/秒,占用空间13.85G。查询性能:*999*第一次11.6s,*00100014* 27.3s,相比4.0ALPHA的结果(5000万结果当中,*999*第一次2.6s,*00100014*第一次2.5s)来说,慢了很多,与es的性能差不多,因此,也许lucene4.0真的对性能有大幅提升?

集群对比:

采用4台同样配置(Intel i7,32G内存)的Centos 6.3组成的集群,进行对比。

1. 首先是es,很方便的就组成了一个Cluster,等上一个3400万条的Index全部均衡负载之后进行测试,导入到另外一个Index当中。

2. 导入性能:8500万条记录,用时72分钟,约为19676条/秒。在前5千万条记录导入时的速度在2万/条以上,初始的速度在2.2万/条。占用空间78.6G(由于有冗余,实际占用空间为157.2G)

3. 查询性能:

*999*第一次13.5秒,第二次19.5秒,第三次7.4秒,第四次7.1秒,第五次7.1秒

*00100014*第一次17.2秒,第二次16.6秒,第三次17.9秒,第四次16.7秒,第五次17.1秒

SAM_CODE:*999*,0.8s,1.3s,0.02s,0.02s,0.02s

SAM_CODE: *00100014*,0.1s,0.1s,0.02s,0.03s,0.05s

4. Solr4.0-ALPHA,SolrCloud的配置还算简单,启动一个ZooKeeper,然后其他三台机器访问这个地址,就可以组成一个Cloud:

机器1: nohup java -Xms10G -Xmx10G -Xss256k -Djetty.port=8983 -Dsolr.solr.home="./example-DIH/solr/" -Dbootstrap_confdir=./example-DIH/solr/db/conf/ -Dcollection.configName=xabconf3 -DzkRun -DnumShards=4 -jar start.jar &

其他机器:nohup java -Xms10G -Xmx10G -Dsolr.solr.home="./example-DIH/solr/" -DzkHost=192.168.2.11:9983 -jar start.jar &

但是在执行 data import 的时候,频繁出现 OutOfMemoryError: unable to create new native thread。查了很多资料,把Linux的ulimit当中的nproc改成10240,把Xss改成256K,都解决不了问题。暂时没有办法进行。

结论

1. 导入性能,es更强

2. 查询性能,solr 4.0最好,es与solr 3.6持平,可以乐观的认为,等es采用了lucene4之后,性能会有质的提升

3. Es采用SAM_CODE这样的查询性能很好,但是用_all性能就很差,而且差别非常大,因此,个人认为在目前的es情况下,仍然有性能提升的空间,只是现在还没找到方法。

② elasticsearch 用什么语言开发

Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

③ GitHub上面有哪些经典的java框架源码

  • Bazel:来自Google的构建工具,可以快速、可靠地构建代码。官网

  • Gradle:使用Groovy(非XML)进行增量构建,可以很好地与Maven依赖管理配合工作。官网

  • Buck:Facebook构建工具。官网

  • 字节码操作

    编程方式操作字节码的开发库。

  • ASM:通用底层字节码操作和分析开发库。官网

  • Byte Buddy:使用流式API进一步简化字节码生成。官网

  • Byteman:在运行时通过DSL(规则)操作字节码进行测试和故障排除。官网

  • Javassist:一个简化字节码编辑尝试。官网

  • 集群管理

    在集群内动态管理应用程序的框架。

  • Apache Aurora:Apache Aurora是一个Mesos框架,用于长时间运行服务和定时任务(cron job)。官网

  • Singularity:Singularity是一个Mesos框架,方便部署和操作。它支持Web Service、后台运行、调度作业和一次性任务。官网

  • 代码分析

    测量代码指标和质量工具。

  • Checkstyle:代码编写规范和标准静态分析工具。官网

  • Error Prone:将常见编程错误作为运行时错误报告。官网

  • FindBugs:通过字节码静态分析查找隐藏bug。官网

  • jQAssistant:使用基于Neo4J查询语言进行代码静态分析。官网

  • PMD:对源代码分析查找不良的编程习惯。官网

  • SonarQube:通过插件集成其它分析组件,对过去一段时间内的数据进行统计。官网

  • 编译器生成工具

    用来创建解析器、解释器或编译器的框架。

  • ANTLR:复杂的全功能自顶向下解析框架。官网

  • JavaCC:JavaCC是更加专门的轻量级工具,易于上手且支持语法超前预测。官网

  • 外部配置工具

    支持外部配置的开发库。

  • config:针对JVM语言的配置库。官网

  • owner:减少冗余配置属性。官网

  • 约束满足问题求解程序

    帮助解决约束满足问题的开发库。

  • Choco:可直接使用的约束满足问题求解程序,使用了约束规划技术。官网

  • JaCoP:为FlatZinc语言提供了一个接口,可以执行MiniZinc模型。官网

  • OptaPlanner:企业规划与资源调度优化求解程序。官网

  • Sat4J:逻辑代数与优化问题最先进的求解程序。官网

  • 持续集成

  • Bamboo:Atlassian解决方案,可以很好地集成Atlassian的其他产品。可以选择开源许可,也可以购买商业版。官网

  • CircleCI:提供托管服务,可以免费试用。官网

  • Codeship:提供托管服务,提供有限的免费模式。官网

  • fabric8:容器集成平台。官网

  • Go:ThoughtWork开源解决方案。官网

  • Jenkins:支持基于服务器的部署服务。官网

  • TeamCity:JetBrain的持续集成解决方案,有免费版。官网

  • Travis:通常用作开源项目的托管服务。官网

  • Buildkite: 持续集成工具,用简单的脚本就能设置pipeline,而且能快速构建,可以免费试用。官网

  • CSV解析

    简化CSV数据读写的框架与开发库

  • uniVocity-parsers:速度最快功能最全的CSV开发库之一,同时支持TSV与固定宽度记录的读写。官网

  • 数据库

    简化数据库交互的相关工具。

  • Apache Phoenix:HBase针对低延时应用程序的高性能关系数据库层。官网

  • Crate:实现了数据同步、分片、缩放、复制的分布式数据存储。除此之外还可以使用基于sql的语法跨集群查询。官网

  • Flyway:简单的数据库迁移工具。官网

  • H2:小型SQL数据库,以可以作为内存数据库使用着称。官网

  • HikariCP:高性能JDBC连接工具。官网

  • JDBI:便捷的JDBC抽象。官网

  • Protobuf:Google数据交换格式。官网

  • SBE:简单二进制编码,是最快速的消息格式之一。官网

  • Wire:整洁轻量级协议缓存。官网

  • 帮实现依赖翻转范式的开发库。官网

  • Apache DeltaSpike:CDI扩展框架。官网

  • Dagger2:编译时注入框架,不需要使用反射。官网

  • Guice:可以匹敌Dagger的轻量级注入框架。官网

  • HK2:轻量级动态依赖注入框架。官网

  • 开发流程增强工具

    从最基本的层面增强开发流程。

  • ADT4J:针对代数数据类型的JSR-269代码生成器。官网

  • AspectJ:面向切面编程(AOP)的无缝扩展。官网

  • Auto:源代码生成器集合。官网

  • DCEVM:通过修改JVM在运行时支持对已加载的类进行无限次重定义。官网

  • HotswapAgent:支持无限次重定义运行时类与资源。官网

  • Immutables:类似Scala的条件类。官网

  • JHipster:基于Spring Boot与AngularJS应用程序的Yeoman源代码生成器。官网

  • JRebel:无需重新部署,可以即时重新加载代码与配置的商业软件。官网

  • Lombok:减少冗余的代码生成器。官网

  • Spring Loaded:类重载代理。官网

  • vert.x:多语言事件驱动应用框架。官网

  • 分布式应用

    用来编写分布式容错应用的开发库和框架。

  • Akka:用来编写分布式容错并发事件驱动应用程序的工具和运行时。官网

  • Apache Storm:实时计算系统。官网

  • Apache ZooKeeper:针对大型分布式系统的协调服务,支持分布式配置、同步和名称注册。官网

  • Hazelcast:高可扩展内存数据网格。官网

  • Hystrix:提供延迟和容错。官网

  • JGroups:提供可靠的消息传递和集群创建的工具。官网

  • Orbit:支持虚拟角色(Actor),在传统角色的基础上增加了另外一层抽象。官网

  • Quasar:为JVM提供轻量级线程和角色。官网

  • 分布式数据库

    对应用程序而言,在分布式系统中的数据库看起来就像是只有一个数据源。

  • Apache Cassandra:列式数据库,可用性高且没有单点故障。官网

  • Apache HBase:针对大数据的Hadoop数据库。官网

  • Druid:实时和历史OLAP数据存储,在聚集查询和近似查询方面表现不俗。官网

  • Infinispan:针对缓存的高并发键值对数据存储。官网

  • 发布

    以本机格式发布应用程序的工具。

  • Bintray:发布二进制文件版本控制工具。可以于Maven或Gradle一起配合使用。提供开源免费版本和几种商业收费版本。官网

  • Central Repository:最大的二进制组件仓库,面向开源社区提供免费服务。Apache Maven默认使用Central官网Repository,也可以在所有其他构建工具中使用。

  • IzPack:为跨平台部署建立创作工具(Authoring Tool)。官网

  • JitPack:打包GitHub仓库的便捷工具。可根据需要构建Maven、Gradle项目,发布可立即使用的组件。官网

  • Launch4j:将JAR包装为轻量级本机Windows可执行程序。官网

  • Nexus:支持代理和缓存功能的二进制管理工具。官网

  • packr:将JAR、资源和JVM打包成Windows、Linux和Mac OS X本地发布文件。官网

  • 文档处理工具

    处理Office文档的开发库。

  • Apache POI:支持OOXML规范(XLSX、DOCX、PPTX)以及OLE2规范(XLS、DOC、PPT)。官网

  • documents4j:使用第三方转换器进行文档格式转换,转成类似MS Word这样的格式。官网

  • jOpenDocument:处理OpenDocument格式(由Sun公司提出基于XML的文档格式)。官网

  • 函数式编程

    函数式编程支持库。

  • Cyclops:支持一元(Monad)操作和流操作工具类、comprehension(List语法)、模式匹配、trampoline等特性。官网

  • Fugue:Guava的函数式编程扩展。官网

  • Functional Java:实现了多种基础和高级编程抽象,用来辅助面向组合开发(composition-oriented development)。官网

  • Javaslang:一个函数式组件库,提供持久化数据类型和函数式控制结构。官网

  • jOOλ:旨在填补Java 8 lambda差距的扩展,提供了众多缺失的类型和一组丰富的顺序流API。官网

  • 游戏开发

    游戏开发框架。

  • jMonkeyEngine:现代3D游戏开发引擎。官网

  • libGDX:全面的跨平台高级框架。官网

  • LWJGL:对OpenGL/CL/AL等技术进行抽象的健壮框架。官网

  • GUI

    现代图形化用户界面开发库。

  • JavaFX:Swing的后继者。官网

  • Scene Builder:开发JavaFX应用的可视化布局工具。官网

  • 高性能计算

    涵盖了从集合到特定开发库的高性能计算相关工具。

  • Agrona:高性能应用中常见的数据结构和工具方法。官网

  • Disruptor:线程间消息传递开发库。官网

  • fastutil:快速紧凑的特定类型集合(Collection)。官网

  • GS Collections:受Smalltalk启发的集合框架。官网

  • HPPC:基础类型集合。官网

  • Javolution:实时和嵌入式系统的开发库。官网

  • JCTools:JDK中缺失的并发工具。官网

  • Koloboke:Hash set和hash map。官网

  • Trove:基础类型集合。官网

  • High-scale-bli:Cliff Click 个人开发的高性能并发库官网

  • IDE

    简化开发的集成开发环境。

  • Eclipse:老牌开源项目,支持多种插件和编程语言。官网

  • IntelliJ IDEA:支持众多JVM语言,是安卓开发者好的选择。商业版主要针对企业客户。官网

  • NetBeans:为多种技术提供集成化支持,包括Java SE、Java EE、数据库访问、HTML5

  • Imgscalr:纯Java 2D实现,简单、高效、支持硬件加速的图像缩放开发库。官网

  • Picasso:安卓图片下载和图片缓存开发库。官网

  • Thumbnailator:Thumbnailator是一个高质量Java缩略图开发库。官网

  • ZXing:支持多种格式的一维、二维条形码图片处理开发库。官网

  • im4java: 基于ImageMagick或GraphicsMagick命令行的图片处理开发库,基本上ImageMagick能够支持的图片格式和处理方式都能够处理。官网

  • Apache Batik:在Java应用中程序以SVG格式显示、生成及处理图像的工具集,包括SVG解析器、SVG生成器、SVG DOM等模块,可以集成使用也可以单独使用,还可以扩展自定义的SVG标签。官网

  • JSON

    简化JSON处理的开发库。

  • Genson:强大且易于使用的Java到JSON转换开发库。官网

  • Gson:谷歌官方推出的JSON处理库,支持在对象与JSON之间双向序列化,性能良好且可以实时调用。官网

  • Jackson:与GSON类似,在频繁使用时性能更佳。官网

  • LoganSquare:基于Jackson流式API,提供对JSON解析和序列化。比GSON与Jackson组合方式效果更好。官网

  • Fastjson:一个Java语言编写的高性能功能完善的JSON库。官网

  • Kyro:快速、高效、自动化的Java对象序列化和克隆库。官网

  • JVM与JDK

    目前的JVM和JDK实现。

  • JDK 9:JDK 9的早期访问版本。官网

  • OpenJDK:JDK开源实现。官网

  • 基于JVM的语言

    除Java外,可以用来编写JVM应用程序的编程语言。

  • Scala:融合了面向对象和函数式编程思想的静态类型编程语言。官网

  • Groovy:类型可选(Optionally typed)的动态语言,支持静态类型和静态编译。目前是一个Apache孵化器项目。官网

  • Clojure:可看做现代版Lisp的动态类型语言。官网

  • Ceylon:RedHat开发的面向对象静态类型编程语言。官网

  • Kotlin:JetBrain针对JVM、安卓和浏览器提供的静态类型编程语言。官网

  • Xtend:一种静态编程语言,能够将其代码转换为简洁高效的Java代码,并基于JVM运行。官网

  • 日志

    记录应用程序行为日志的开发库。

  • Apache Log4j 2:使用强大的插件和配置架构进行完全重写。官网

  • kibana:分析及可视化日志文件。官网

  • Logback:强健的日期开发库,通过Groovy提供很多有趣的选项。官网

  • logstash:日志文件管理工具。官网

  • Metrics:通过JMX或HTTP发布参数,并且支持存储到数据库。官网

  • SLF4J:日志抽象层,需要与具体的实现配合使用。官网

  • 机器学习

    提供具体统计算法的工具。其算法可从数据中学习。

  • Apache Flink:快速、可靠的大规模数据处理引擎。官网

  • Apache Hadoop:在商用硬件集群上用来进行大规模数据存储的开源软件框架。官网

  • Apache Mahout:专注协同过滤、聚类和分类的可扩展算法。官网

  • Apache Spark:开源数据分析集群计算框架。官网

  • DeepDive:从非结构化数据建立结构化信息并集成到已有数据库的工具。官网

  • Deeplearning4j:分布式多线程深度学习开发库。官网

  • H2O:用作大数据统计的分析引擎。官网

  • Weka:用作数据挖掘的算法集合,包括从预处理到可视化的各个层次。官网

  • QuickML:高效机器学习库。官网、GitHub

  • 消息传递

    在客户端之间进行消息传递,确保协议独立性的工具。

  • Aeron:高效可扩展的单播、多播消息传递工具。官网

  • Apache ActiveMQ:实现JMS的开源消息代理(broker),可将同步通讯转为异步通讯。官网

  • Apache Camel:通过企业级整合模式(Enterprise Integration Pattern EIP)将不同的消息传输API整合在一起。官网

  • Apache Kafka:高吞吐量分布式消息系统。官网

  • Hermes:快速、可靠的消息代理(Broker),基于Kafka构建。官网

  • JBoss HornetQ:清晰、准确、模块化,可以方便嵌入的消息工具。官网

  • JeroMQ:ZeroMQ的纯Java实现。官网

  • Smack:跨平台XMPP客户端函数库。官网

  • Openfire:是开源的、基于XMPP、采用Java编程语言开发的实时协作服务器。 Openfire安装和使用都非常简单,并可利用Web界面进行管理。官网GitHub

  • Spark:是一个开源,跨平台IM客户端。它的特性支持集组聊天,电话集成和强大安全性能。如果企业内部部署IM使用Openfire+Spark是最佳的组合。官网GitHub

  • Tigase: 是一个轻量级的可伸缩的 Jabber/XMPP 服务器。无需其他第三方库支持,可以处理非常高的复杂和大量的用户数,可以根据需要进行水平扩展。官网

  • 杂项

    未分类其它资源。

  • Design Patterns:实现并解释了最常见的设计模式。官网

  • Jimfs:内存文件系统。官网

  • Lanterna:类似curses的简单console文本GUI函数库。官网

  • LightAdmin:可插入式CRUD UI函数库,可用来快速应用开发。官网

  • OpenRefine:用来处理混乱数据的工具,包括清理、转换、使用Web Service进行扩展并将其关联到数据库。官网

  • RoboVM:Java编写原生iOS应用。官网

  • Quartz:强大的任务调度库.官网

  • 应用监控工具

    监控生产环境中应用程序的工具。

  • AppDynamics:性能监测商业工具。官网

  • JavaMelody:性能监测和分析工具。官网

  • Kamon:Kamon用来监测在JVM上运行的应用程序。官网

  • New Relic:性能监测商业工具。官网

  • SPM:支持对JVM应用程序进行分布式事务追踪的性能监测商业工具。官网

  • Takipi:产品运行时错误监测及调试商业工具。官网

  • 原生开发库

    用来进行特定平台开发的原生开发库。

  • JNA:不使用JNI就可以使用原生开发库。此外,还为常见系统函数提供了接口。官网

  • 自然语言处理

    用来专门处理文本的函数库。

  • Apache OpenNLP:处理类似分词等常见任务的工具。官网

  • CoreNLP:斯坦佛CoreNLP提供了一组基础工具,可以处理类似标签、实体名识别和情感分析这样的任务。官网

  • LingPipe:一组可以处理各种任务的工具集,支持POS标签、情感分析等。官网

  • Mallet:统计学自然语言处理、文档分类、聚类、主题建模等。官网

  • 网络

    网络编程函数库。

  • Async Http Client:异步HTTP和WebSocket客户端函数库。官网

  • Grizzly:NIO框架,在Glassfish中作为网络层使用。官网

  • Netty:构建高性能网络应用程序开发框架。官网

  • OkHttp:一个Android和Java应用的HTTP+SPDY客户端。官网

  • Undertow:基于NIO实现了阻塞和非阻塞API的Web服务器,在WildFly中作为网络层使用。官网

  • ORM

    处理对象持久化的API。

  • Ebean:支持快速数据访问和编码的ORM框架。官网

  • EclipseLink:支持许多持久化标准,JPA、JAXB、JCA和SDO。官网

  • Hibernate:广泛使用、强健的持久化框架。Hibernate的技术社区非常活跃。官网

  • MyBatis:带有存储过程或者SQL语句的耦合对象(Couples object)。官网

  • OrmLite:轻量级开发包,免除了其它ORM产品中的复杂性和开销。官网

  • Nutz:另一个SSH。官网,Github

  • JFinal:JAVA WEB + ORM框架。官网,Github

  • PDF

    用来帮助创建PDF文件的资源。

  • Apache FOP:从XSL-FO创建PDF。官网

  • Apache PDFBox:用来创建和操作PDF的工具集。官网

  • DynamicReports:JasperReports的精简版。官网

  • flyingsaucer:XML/XHTML和CSS 2.1渲染器。官网

  • iText:一个易于使用的PDF函数库,用来编程创建PDF文件。注意,用于商业用途时需要许可证。官网

  • JasperReports:一个复杂的报表引擎。官网

  • 性能分析

    性能分析、性能剖析及基准测试工具。

  • jHiccup:提供平台中JVM暂停的日志和记录。官网

  • JMH:JVM基准测试工具。官网

  • JProfiler:商业分析器。官网

  • LatencyUtils:测量和报告延迟的工具。官网

  • VisualVM:对运行中的应用程序信息提供了可视化界面。官网

  • YourKit Java Profiler:商业分析器。官网

  • 响应式开发库

    用来开发响应式应用程序的开发库。

  • Reactive Streams:异步流处理标准,支持非阻塞式反向压力(backpressure)。官网

  • Reactor:构建响应式快速数据(fast-data)应用程序的开发库。官网

  • RxJava:通过JVM可观察序列(observable sequence)构建异步和基于事件的程序。官网

  • REST框架

    用来创建RESTful 服务的框架。

  • Dropwizard:偏向于自己使用的Web框架。用来构建Web应用程序,使用了Jetty、Jackson、Jersey和Metrics。官网

  • Feign:受Retrofit、JAXRS-2.0和WebSocket启发的HTTP客户端连接器(binder)。官网

  • Jersey:JAX-RS参考实现。官网

  • RESTEasy:经过JAX-RS规范完全认证的可移植实现。官网

  • RestExpress:一个Java类型安全的REST客户端。官网

  • RestX:基于注解处理和编译时源码生成的框架。官网

  • Retrofit:类型安全的REST客户端。官网

  • Spark:受到Sinatra启发的Java REST框架。官网

  • Swagger:Swagger是一个规范且完整的框架,提供描述、生产、消费和可视化RESTful Web Service。官网

  • Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网

  • 科学计算与分析

    用于科学计算和分析的函数库。

  • DataMelt:用于科学计算、数据分析及数据可视化的开发环境。官网

  • JGraphT:支持数学图论对象和算法的图形库。官网

  • JScience:用来进行科学测量和单位的一组类。官网

  • 搜索引擎

    文档索引引擎,用于搜索和分析。

  • Apache Solr:一个完全的企业搜索引擎。为高吞吐量通信进行了优化。官网

  • Elasticsearch:一个分布式、支持多租户(multitenant)全文本搜索引擎。提供了RESTful Web接口和无schema的JSON文档。官网

  • Apache Lucene:是一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。官网

  • 安全

    用于处理安全、认证、授权或会话管理的函数库。

  • Apache Shiro:执行认证、授权、加密和会话管理。官网

  • Bouncy Castle,涵盖了从基础的帮助函数到PGP/SMIME操作。官网:多途加密开发库。支持JCA提供者(JCA provider)

  • Cryptomator:在云上进行客户端跨平台透明加密。官网

  • Keycloak:为浏览器应用和RESTful Web Service集成SSO和IDM。目前还处于beta版本,但是看起来非常有前途。官网

  • PicketLink:PicketLink是一个针对Java应用进行安全和身份认证管理的大型项目(Umbrella Project)。官网

  • 序列化

    用来高效处理序列化的函数库。

  • FlatBuffers:高效利用内存的序列化函数库,无需解包和解析即可高效访问序列化数据。官网

  • Kryo:快速、高效的对象图形序列化框架。官网

  • FST:提供兼容JDK的高性能对象图形序列化。官网

  • MessagePack:一种高效的二进制序列化格式。官网

  • 应用服务器

    用来部署应用程序的服务器。

  • Apache Tomcat:针对Servlet和JSP的应用服务器,健壮性好且适用性强。官网

  • Apache TomEE:Tomcat加Java EE。官网

  • Jetty:轻量级、小巧的应用服务器,通常会嵌入到项目中。官网

  • WebSphere Liberty:轻量级、模块化应用服务器,由IBM开发。官网

  • WildFly:之前被称作JBoss,由Red Hat开发。支持很多Java EE功能。官网

  • 模板引擎

    在模板中替换表达式的工具。

  • Apache Velocity:提供HTML页面模板、email模板和通用开源代码生成器模板。官网

  • FreeMarker:通用模板引擎,不需要任何重量级或自己使用的依赖关系。官网

  • Handlebars.java:使用Java编写的模板引擎,逻辑简单,支持语义扩展(semantic Mustache)。官网

  • Thymeleaf:旨在替换JSP,支持XML文件的工具。官网

  • 测试

    测试内容从对象到接口,涵盖性能测试和基准测试工具。

  • Apache JMeter:功能性测试和性能评测。官网

  • Arquillian:集成测试和功能行测试平台,集成Java EE容器。官网

  • AssertJ:支持流式断言提高测试的可读性。官网

  • Awaitility:用来同步异步操作的DSL。官网

  • Cucumber:BDD测试框架。官网

  • Gatling:设计为易于使用、可维护的和高性能负载测试工具。官网

  • Hamcrest:可用来灵活创建意图(intent)表达式的匹配器。官网

  • JMockit:用来模拟静态、final方法等。官网

  • JUnit:通用测试框架。官网

  • Mockito:在自动化单元测试中创建测试对象,为TDD或BDD提供支持。官网

  • PowerMock: 支持模拟静态方法、构造函数、final类和方法、私有方法以及移除静态初始化器的模拟工具。官网

  • REST Assured:为REST/HTTP服务提供方便测试的Java DSL。官网

  • Selenide:为Selenium提供精准的周边API,用来编写稳定且可读的UI测试。官网

  • Selenium:为Web应用程序提供可移植软件测试框架。官网

  • Spock:JUnit-compatible framework featuring an expressive Groovy-derived specification language.官网兼容JUnit框架,支持衍生的Groovy范的语言。

  • TestNG:测试框架。官网

  • Truth:Google的断言和命题(proposition)框架。官网

  • Unitils:模块化测试函数库,支持单元测试和集成测试。官网

  • WireMock:Web Service测试桩(Stub)和模拟函数。官网

  • 通用工具库

    通用工具类函数库。

  • Apache Commons:提供各种用途的函数,比如配置、验证、集合、文件上传或XML处理等。官网

  • args4j:命令行参数解析器。官网

  • CRaSH:为运行进行提供CLI。官网

  • Gephi:可视化跨平台网络图形化操作程序。官网

  • Guava:集合、缓存、支持基本类型、并发函数库、通用注解、字符串处理、I/O等。官网

  • JADE:构建、调试多租户系统的框架和环境。官网

  • javatuples:正如名字表示的那样,提供tuple支持。尽管目前tuple的概念还有留有争议。官网

  • JCommander:命令行参数解析器。官网

  • Protégé:提供存在论(ontology)编辑器以及构建知识系统的框架。官网

  • 网络爬虫

    用于分析网站内容的函数库。

  • Apache Nutch:可用于生产环境的高度可扩展、可伸缩的网络爬虫。官网

  • Crawler4j:简单的轻量级网络爬虫。官网

  • JSoup:刮取、解析、操作和清理HTML。官网

  • Web框架

    用于处理Web应用程序不同层次间通讯的框架。

  • Apache Tapestry:基于组件的框架,使用Java创建动态、强健的、高度可扩展的Web应用程序。官网

  • Apache Wicket:基于组件的Web应用框架,与Tapestry类似带有状态显示GUI。官网

  • Google Web Toolkit:一组Web开发工具集,包含在客户端将Java代码转为JavaScript的编译器、XML解析器、RCP官网API、JUnit集成、国际化支持和GUI控件。

  • Grails:Groovy框架,旨在提供一个高效开发环境,使用约定而非配置、没有XML并支持混入(mixin)。官网

  • Ninja:Java全栈Web开发框架。非常稳固、快速和高效。官网

  • Pippo:小型、高度模块化的类Sinatra框架。官网

  • Play:使用约定而非配置,支持代码热加载并在浏览器中显示错误。官网

  • PrimeFaces:JSF框架,提供免费和带支持的商业版本。包括若干前端组件。官网

  • Ratpack:一组Java开发函数库,用于构建快速、高效、可扩展且测试完备的HTTP应用程序。官网

  • Spring Boot:微框架,简化了Spring新程序的开发过程。官网

  • Spring:旨在简化Java EE的开发过程,提供依赖注入相关组件并支持面向切面编程。官网

  • Vaadin:基于GWT构建的事件驱动框架。使用服务端架构,客户端使用Ajax。官网

  • Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网

  • 业务流程管理套件

    流程驱动的软件系统构建。

  • jBPM:非常灵活的业务流程管理框架,致力于构建开发与业务分析人员之间的桥梁。官网

  • Activity:轻量级工作流和业务流程管理框架。官网github

  • 资源

    社区

④ 如何查看elasticsearch版本

查看elasticsearch版本的方法:

1、elasticsearch已经启动的情况下

使用curl-XGETlocalhost:9200命令查看:

"version":{

"number":"1.7.2",

"build_hash":"",

"build_timestamp":"2015-09-14T09:49:53Z",

"build_snapshot":false,

"lucene_version":"4.10.4"

}

在输出的json中有版本信息version中的number-1.7.2即为其版本号。

2、在elasticsearch没有启动的情况下

通过在es的安装目录下的lib目录中查看jar包来确定版本号:

lslib/|grep-P'elasticsearch-d.d.d.jar'

输出elasticsearch-1.7.2.jar。

通过jar包可知es版本号为1.7.2


(4)elasticsearch源码扩展阅读

elasticsearch的特点

1、天然分片,天然集群

es把数据分成多个shard,下图中的P0-P2,多个shard可以组成一份完整的数据,这些shard可以分布在集群中的各个机器节点中。随着数据的不断增加,集群可以增加多个分片,把多个分片放到多个机子上,已达到负载均衡,横向扩展。

2、天然索引

ES 所有数据都是默认进行索引的,这点和mysql正好相反,mysql是默认不加索引,要加索引必须特别说明,ES只有不加索引才需要说明。

⑤ 什么是Elasticsearch

ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是第二最流行的企业搜索引擎。

热点内容
linuxsvn配置 发布:2025-01-08 12:19:11 浏览:376
苹果扁头耳机如何在安卓手机上用 发布:2025-01-08 12:17:37 浏览:107
为什么解绑卡还要密码 发布:2025-01-08 12:13:51 浏览:69
反编译得到源代码的比例 发布:2025-01-08 12:12:36 浏览:619
苹果手机7z怎么解压 发布:2025-01-08 12:11:55 浏览:119
租用的云服务器还需要流量么 发布:2025-01-08 12:11:30 浏览:584
为什么手游对手机配置要求低 发布:2025-01-08 12:06:53 浏览:212
怎么设置qq邮箱独立密码 发布:2025-01-08 11:58:14 浏览:387
公司建设网站怎么搭建服务器 发布:2025-01-08 11:45:43 浏览:307
dell存储分类 发布:2025-01-08 11:40:02 浏览:715