当前位置:首页 » 操作系统 » 抓团算法

抓团算法

发布时间: 2022-06-06 09:04:23

‘壹’ 想要和队友抱团抓人的时候,怎么判断对方会不会反蹲呢

要提前看好对方的位置,而且在抓人的时候要选择单走的,这样的话抓起来会特别的容易。

‘贰’ 作为一名新上任的团支部书记应该从哪几方面着手抓团支部建设

了解班内团员动态,心里所想,召集一起讨论如何建设团支部

‘叁’ 萧山麻将胡牌算法

http://ke..com/view/4180775.htm
胡牌大小自摸 *1 ,爆头 *2 ,明杠开 *2 ,暗杠开 *4 ,财飘 *4 ,碰碰胡 *2 ,全倒 *2 ,七对子(有财神) *4 ,清七对(没财神) *8 ,清一色 *8 ,字一色 *16 ,天胡 *16 ,地胡 *16 。 7 对子中如果有 4 个一样的牌,大小 *2 ,有 2 组 4 个一样的,大小再 *2 ,以此类推。胡牌者有杠,每一杠奖励 1 。 如果是杠爆,就是杠开加爆头,大小是 2*2=4 。如果是碰碰胡爆头,大小是 2*2=4 。如果是七对子爆头,大小是 4*2=8 。如果是杠财财飘,大小是 2*2*4=16 ,依此类推。庄 *2 ,二连庄 *4 ,三连庄 *8 ( 3 连庄以上按 3 连庄算)。如果抓完牌,大家没胡,庄家继续做庄,连庄 +1 。承包: 如果玩家间发生吃碰 3 摊的,吃碰者胡牌,由被吃碰者一家承包,被吃碰者胡牌,吃碰者承包,并且加倍。如果多者发生这种情况都要算。其他情况: 同一张牌,不碰上家就不可以碰下家,允许吃张打张( 456 条,吃 7 条打 4 条),但如果已经吃了上家 2 摊,就不允许吃张打张。当财神打出去时,其他三家不能吃碰,打财神的可以吃碰。庄 *2 ,二连庄 *4 ,三连庄 *8 ( 3 连庄以上按 3 连庄算)。如果抓完牌,大家没胡,庄家继续做庄,连庄 +1 。

‘肆’ 关于java新闻网站的算法

(一) 算法伦理的研究
1.算法内涵界定。算法源于数学,但现代算法又远远不止于传统数学的计算范畴。算法多被理解为是计算机用于解决问题的程序或步骤,是现代人工智能系统的运行支柱。《计算主义:一种新的世界观》(李建会等,2012)中将算法定义为能行的方法,在外界的常识性理解中所谓算法就是能感受到的一套运算规则,这个规则的特点在于运算时间的有限性、计算步骤的有穷性、输入结果的确切性,它是机械步骤或能行可算计程序。该定义点明了算法应具备的两个基本属性——有限性与有穷性。《用计算的观点看世界》( 郦全民,2016) 则从信息传播的角度解读算法,认为算法实质上是信息处理方法。
2.算法伦理研究
伦理关乎道德价值真理及其判断。存在于自然界、社会中的人,其行为应遵循一定的伦理道德规范。伦理的效应要导向善。伦理道德关注对个体存在的尊重、个体的自由、公平正义以及组织团体的延续与发展等问题。在一定程度上可以说,当今的人类社会已经不能脱离智能算法系统而运行了。
算法无时无处不在对世界产生影响,因而算法也会必然的触碰到伦理道德。和鸿鹏(2017)已指出,算法系统在人类社会生活中的广泛应用,会陷入诸多如人类面临且无法回避的伦理两难选择困境之中。而当算法与伦理发生关联时,学界一般认为会引出职业伦理和技术伦理两种伦理问题。
职业伦理主要与算法系统的开发者有关,指开发者是带有个性价值观、伦理道德观去研发算法系统的行为体,因而算法系统一开始便会掺杂着设计人主观性的伦理道德观。设计者出于何种目的开发某算法系统、面对不同问题设计者持有的伦理道德态度,这些都会在算法系统的运行中得到体现。
技术伦理是算法系统在一定意义上可称之为一种科学技术,这种技术自身及其运作结果都会负载着伦理价值。其实在一些情况下,职业伦理与技术伦理之间并没有很明确的界别,关于这一点,刘则渊跟王国豫已做过论述。
本文将主要从技术伦理的角度对算法关涉伦理这一问题尝试做深入研究。
(二)网络新闻传播的算法伦理研究
算法与技术的融合不断英语于网络新闻传播领域中,从数据新闻到机器写作,从算法推送到舆情到分析,国内新闻传媒领域的机器新闻和相关研究逐渐发展,金兼斌在《机器新闻写作:一场正在发生的革命》(2014),作者较早的将眼光聚焦于基于算法的新闻内容生产和编辑。认为在自动化新闻生产大发展的前提下,诸如新闻生产或分发中劳动密集型的基础性工作与环节都将被技术取代。张超、钟新在《从比特到人工智能:数字新闻生产的算法转向》(2017) 认为算法正在从比特形式走向人工智能阶段,这种转向使得数字新闻与传统新闻的边界进一步明晰,促使数字新闻生产也产生了变革。胡万鹏在《智能算法推荐的伦理风险及防范策略》中总结了从算法推送方面:针对新闻的价值观所受到的负面影响;以及新闻的公共性、客观性和真实性受到的削弱进行分析;从受众方面:将具体对信息茧房现象以及受众的知情权和被遗忘权展开探讨;从社会影响方面,则针对社会群体、社会公共领域和社会文化所受到的消极影响展开论述。
根据以上文献的梳理可以看出,国内目前对网络新闻传播的算法伦理研究主要集中在新闻业态算法伦理失范的相关问题,因为与其他失范问题相比,这是比较容易发现的。但目前关于网络新闻传播的算法伦理的国内研究还存在不足:国内算法伦理和网络新闻传播算法伦理的研究还是在起步阶段,比较成熟的系统性研究还未出现;关于算法开发人员和平台的责任机制的研究都比较薄弱,总上所述,算法推送新闻的伦理问题研究是有必要继续加强的。
2.新闻推荐算法的兴起、发展与原理
2.1 新闻推荐算法的兴起
随着计算机技术的信息处理的维度越来越高,信息处理的能力不断提升,算法技术可以从大数据中筛选出用户最关心最感兴趣的信息,改变了原有的新闻信息传播方式,重塑了新的媒介生态和传播格局。
但反过来看,在人人都能生产信息的背景下,信息的生产、传播和反馈的速度都是呈几何倍数增长,用户面对的信息越来越多。由于设备的局限性和信息海量,用户无法集中注意力看自己感兴趣的内容,也无法及时抓取对自己有用的信息,于是出现了“注意力经济”。美国经济学家迈克尔·戈德海伯(1997)认为,当今社会是一个信息极大丰富甚至泛滥的社会,而互联网的出现,加快了这一进程,信息非但不是稀缺资源,相反是过剩的。相对于过剩的信息,只有一种资源是稀缺的,那就是人们的注意力。换句话说,信息不能够一味追求量,还要有价值,价值就在于用户对信息的注意力,谁获得了用户的注意力就可以有市场的发展空间,通过“贩卖”用户的注意力能够使新媒体聚合平台获得利润,维持发展。再加上现在生活节奏越来越快,人们对信息获取的量和效率要求提高,不想把时间浪费在自己不感兴趣的信息,从而用户获取信息的“个性化”特征变得明显起来。
基于此背景下,算法推送新闻的传播机制应运而生,用户不需要特意搜索自己需要的信息,而是海量的信息会自行“找到”用户,为用户节省搜索时间之余,又能做到真正为用户提供有用的信息。
2.2新闻推荐算法的发展现状
算法推荐是依据用户数据为用户推荐特定领域的信息,根据受众使用反馈不断修正并完善推荐方案。目前主要有两类新闻机构使用算法推送,其一是新型的互联网新闻聚合类平台,国内主要是以今日头条和一点资讯等算法类平台为代表,在我国新闻客户端市场上拥有极高的占有率。张一鸣创建今日头条是依靠大数据和算法为用户推荐信息,提供连接人与信息的服务,算法会以关键词等元素判断用户的兴趣爱好,从全网抓取内容实现个性化推荐。国外则是以Facebook、Instagram等平台为代表,这些APP都是通过算法挖掘用户的数据,以用户个性化需求为导向对用户进行新闻推送。另一种则是专业新闻生产的传统媒体,为积极应对新闻市场的竞争和提高技术水平而转型到新闻全媒体平台,如国内的“人民日报”等,国外利用算法推送向用户推送新闻的传统媒体则有美国的美联社、华盛顿邮报和英国的BBC等,他们利用算法监督受众的数量还有阅读行为,使他们的新闻报道能够更加受受众的喜欢,增加用户的粘性。
2.2 新闻推荐算法的原理
2.2.1 新闻推荐算法的基本要素
算法推送有三个基本要素,分别是用户、内容和算法。用户是算法推送系统的服务对象,对用户的理解和认知越是透彻,内容分法的准确性和有效性就越准确。内容是算法推送系统的基本生产资料,对多种形式内通的分析、组织、储存和分发都需要科学的手段与方法。算法是算法推送技术上的支持,也是最核心的。系统中大量用户与海量的信息是无法自行匹配的,需要推送算法把用户和内容连接起来,在用户和内容之间发挥桥梁作用,高效把合适的内容推荐给合适的用户。
2.2.2 新闻推荐算法的基本原理
算法推送的出现需要具备两个条件:足够的信息源和精确的算法框架。其中,算法的内容生产源与信息分发最终效果密切相关:是否有足够多的信息可供抓取与信息是否有足够的品质令用户满意都将对信息的传播效果产生影响。与此同时,分发环节也在向前追溯,改变着整个传播的生态。目前,国内新闻传播领域所使用的算法推送主要有三大类——协同过滤推送、基于内容推送和关联规则推送。
协同过滤推送分为基于用户的协同过滤和基于模型的协同过滤。前者主要考虑的是用户和用户之间的相似度,只要找出相似用户喜欢的新闻文章类别,并预测目标用户对该文章的喜欢程度,就可以将其他文章推荐给用户;后者和前者是类似的,区别在此时转向找到文章和文章之间的相似度,只有找到了目标用户对某类文章的喜爱程度,那么我们就可以对相似度高的类似文章进行预测,将喜爱程度相当的相似文章推荐给用户。因此,前者利用用户历史数据在整个用户数据库中寻找相似的推送文章进行推荐,后者通过用户历史数据构造预测模型,再通过模型进行预测并推送。
基于内容的推送即根据用户历史进行文本信息特征抽取、过滤,生成模型,向用户推荐与历史项目内容相似的信息。它的优点之一就是解决了协同过滤中数据稀少时无法准确判断分发的问题。但如果长期只根据用户历史数据推荐信息,会造成过度个性化,容易形成“信息茧房”。
关联规则推送就是基于用户历史数据挖掘用户数据背后的关联,以分析用户的潜在需求,向用户推荐其可能感兴趣的信息。基于该算法的信息推荐流程主要分为两个步骤,第一步是根据当前用户阅读过的感兴趣的内容,通过规则推导出用户还没有阅读过的可能感兴趣的内容;第二是根据规则的重要程度,对内容排序并展现给用户。关联规则推送的效果依赖规则的数量和质量,但随着规则数量的增多,对系统的要求也会提高。
2.2.3 算法推送的实现流程
在信息过载的时代,同一个新闻选题有很多同质化的报道,因此分发前需要对新闻内容进行消重,消重后的新闻内容便等待推送,此时的推送有三个类别:启动推送、扩大推送和限制推送。
第一类是启动推送,先对用户精准推送,即将其订阅账号的更新内容第一时间向用户推荐;然后根据用户的历史浏览数据,把相似的文本特征归类后推送给其他用户;最后是给关注用户的相似人群进行推荐。第二类扩大推送是指对于某个点击率、阅读时长都明显高于平均水平的新闻内容,系统会将它自动筛选出来,并向更多的人进行推荐。但在扩大推荐的过程中,系统会依据用户的反馈进行调整。第三为限制推送,指某个点击率、阅读时长都明显低于平均水平的新闻内容,会被系统自动筛选出来,遏制推送,这样的内容会被缩小推荐范围。

3. “今日头条”新闻推荐算法分析
“今日头条”是国内一款资讯类的媒体聚合平台,每天有超过1.2亿人使用。从“你关心的,才是头条!”到如今的“信息创造价值!”,产品slogan的变化也意味着今日头条正逐渐摆脱以往单一、粗暴的流量思维,而开始注重人与信息的连接,在促进信息高效、精准传播的同时注重正确的价值引导。
在2018年初,“今日头条”的资深算法架构师曹欢欢博士在一场分享交流会上公开了其算法运行原理。在他的叙述中,非常详细地介绍了“今日头条”的算法推荐系统概述以及算法推荐系统的操作原理。

3.1.1-1 曹欢欢博士的今日头条算法建模
上图用数学形式化的方法去描述“今日头条”的算法推送,实际上就是一个能够得出用户对内容满意程度的函数:即y为用户对内容的满意度,Xi,Xc,Xu分别是今日头条公开的算法推送的三个维度:Xi是用户,包括用户的性别、年龄、职业和兴趣标签,还有其他算法模型刻画的隐形用户偏好等;Xc是环境,这也是移动互联网时代新闻推送的特点,由于用户随时随地在不停移动,移动终端也在移动,用户在不同的工作场合、旅行等场景信息推送偏好也会不同;Xu是内容,今日头条本身就是信息聚合类平台,平台上涵盖各种不同形式的内容。本章将以该函数为基础,逐一分析今日头条的推荐算法。
3.1 推荐维度之一:内容分析
内容分析原指第二次世界大战期间,传播学家拉斯韦尔等研究学家组织了“战士通讯研究”的工作,以德国公开出版的战时报纸为分析研究对象,弄清报纸内容本质性的事实和趋势,揭示隐含的隐性情报内容,获取了许多军情机密情报并且对事态发展作出情报预测。在“今日头条”中,内容分析则是对文章、视频内容提取关键要素,通过对文本、视频标题关键字进行语义识别,给内容进行分类。“今日头条”的推送系统是典型的层次化文本分类算法,来帮助每篇新闻找到合适的分类,比如:第一大分类是政治、科技、财经、娱乐、体育等,体育类可以下分篮球、足球、网球等,足球又可以下分中国足球和国际足球,中国足球最后下分为甲、中超、国家队等。这一步是对文章进行对这个工作主要目的是对文章进行分类,方便以后对客户推荐。
想要内容分析实现效果,则需要海量的内容信息给算法系统提供有效的筛选和分类。“今日头条”既然是依赖于算法推送新闻,那它背后的数据库必然是强大的,“网页蜘蛛”和“头条号”就是支撑今日头条平台消息来源的重要渠道,其消息来源极其丰富,何时何地有何新鲜事,都能高效率抓取信息。
第一个消息来源的渠道是“网页蜘蛛”,“网页蜘蛛”又叫网页爬虫,头条使用的就是搜索引擎爬虫叫“Bytespider”。它能按照一定的规则,自动爬行抓取互联网的信息或脚本,就像蜘蛛通过蛛网进行捕食,当发现新的信息资源,蜘蛛会立刻出动抓取信息内容并将其收入自己的数据库中。和微信的垂直搜索不同,Bytespider是能够抓取全网内容的全新搜索引擎,因此“今日头条”的搜索引擎功能很全面,搜索的资源很广,资源包容性极高。
Bytespider信息抓取的基本流程如下:首先是网页抓取。Bytespider顺着网页中的超链接,从这个网站爬到另一个网站,通过超链接分析连续访问抓取更多网页。被抓取的网页被称之为网页快照。由于互联网中超链接的应用很普遍,理论上,从一定范围的网页出发,就能搜集到绝大多数的网页。第二步是处理网页。搜索引擎抓到网页后,还要做大量的预处理工作,才能提供检索服务。其中,最重要的就是提取关键词,建立索引库和索引。其他还包括消除重复网页、判断网页类型、分析超链接、计算网页的重要度、丰富度等。第三步提供检索服务。用户输入关键词进行检索,搜索引擎从索引数据库中找到匹配该关键词的网页,为了用户便于判断,除了网页标题和URL外,还会提供一段来自网页的摘要以及其他信息。
第二个消息来源渠道是“头条号”。与“今日头条”不同,它是今日头条针对媒体、国家机构、企业以及自媒体推出的专业信息发布平台。致力于帮助生产者在移动互联网上高效率地获得更多的曝光和关注。简单来说头条号是媒体在上面撰写并发布文章、视频后,会在今日头条(包括今日头条极速版)平台展示。通过头条号后台,媒体可以看到具体文章推荐量、阅读量、粉丝阅读量、评论量、转发量和收藏量,最后通过这些可以量化的用户阅读行为的反馈,算法系统进一步对目标用户进行内容推荐。
3.2 推荐维度之二:用户分析
用户分析通过提取用户的有效数据,如用户经常浏览的文字类型、经常搜索的关键字、注册时登记信息的内容等,算法系统可以将每个用户的浏览记录、浏览时间、留言、评论和转发等行为进行关键字提取,最终形成用户画像,以便之后对用户进行文章和视频的精准推送。举个例子,给喜欢阅读“体育”的用户标上“体育”标签;给喜欢“娱乐”的用户标上“娱乐”的标签,这一步的作用是给用户的兴趣进行建模,包括用户对文章和视频的全局热度、分类热度,主题热度,以及关键词热度等。热度信息在大的推荐系统能够解决新闻冷启动问题,帮助新闻实现推送。
用户分析还具有协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。协同特征也就是“联想式”的推送方法,并非只考虑用户已有历史,而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。根据用户之间计算数据的相似程度,把用户细化分类成为不同的目标群体,再向目标群体集中的推送其感兴趣的新闻内容
内容分析和用户分析是相辅相成的,如果没有分析的文本标签,无法得到用户兴趣标签,没有用户的兴趣标签就无法给用户定位实现精准推送。
3.3 推荐维度之三:环境分析
环境分析就是根据文章的时效性和接近性推送给相应的用户,比如获取用户当前所在位置是否在旅游区,这个可以通过获取用户的实时位置来实现。还会不断与用户之前经常出现的所在地进行对比等方式确认当前状态,分析出用户是在常住地区还是在旅行。这时若系统检测到用户正在泰山及周边游玩,则可能会相应推送泰山的相关文章、周边的交通新闻和天气信息等等。
通过上面三个推荐维度可以作为数据基础,分析当前用户处于什么环境,结合用户画像以及文章的内容分类来推荐,尽量做到推送的内容都是用户所感兴趣的。算法系统还会通过内容分类、分析抽取,把文本相似度高的文章,包括新闻主题、内容相似的文章进行消重,解决推送重复的问题,进一步对目标用户进行精确且不重复的内容推荐。最后过滤质量低俗色情的内容,以免造成平台会有负面倾向。
3.4 “今日头条”新闻推荐算法的价值取向
3.4.1 “用户为上”
“今日头条”的算法推送是站在用户的立场上的,以满足用户个性化和推送的精准性,“今日头条”也重新衡量了新闻价值标准:以用户为上,用户对新闻内容和阅读方式的满意度便是平台推送新闻的价值宗旨。传统媒体时代,只有报纸和电视,有什么受众就得看什么,而如今“今日头条”根据用户兴趣去进行推送。算法推送平台用户范围广,很多用户热衷关注负面,也有许多用户都有窥视欲和好奇心,喜欢无聊八卦和无聊新闻,而且在好奇心作用下用户都有从众心理。这使得生产者过度去迎合受众,只要是用户喜欢看就可以发表在“今日头条”上。
3.4.2 “算法主导”
“今日头条”更注重技术分发,生产者是用户,受众者也是用户,这样一来内容监管和分发就很困难。算法推送机制根据用户爱好进行推送,这样生产的内容快、也无疑会加速内容配送效率。在算法推送模型中,用户点击频率、阅读时间、点赞评论以及转发在算法时代都是可以进行量化的目标。在这样情况下生产的内容,想要获得较大点击率和推送率,需要标题才能吸引用户,因为用户在平台一眼能看到的就是标题和配图。标题和配图决定用户是否会打开你的内容,这导致许多内容生产者在编辑新闻标题时陷入标题党的怪圈,还有导致低俗内容的呈现,以制造冲突制造悬念贴标签等方式引用户点击,意图把自己的文章做成爆文。对于海量的信息内容,即使今日头条数据和智能推荐做的再好,目前来说也难以抵挡海量的垃圾信息。
4.算法推送新闻引发的伦理问题
在如今网络时代的传播思维中,“用户为上”、“算法主导”的新闻价值取向已经在算法聚合类平台成为了普遍,算法推送技术作为吸引用户的手段,搭建起一个充满诱导的媒介环境,以此增加用户对平台的粘性。算法推送技术在获取信息、传播速度等方面与以往相比有着跨时代的进步,但与此同时,由于算法推送技术的加入,衍生出新的伦理问题,并且日渐复杂化。
4.1 算法推送引发的伦理问题
4.1.1 算法推送过于机械化,没有思考能力
单向的算法推荐对用户来说经常会带来内容杂乱无章、信息量过大、信息价值低等问题。从逻辑讲,算法只是从关键字的检索匹配来完成统计推荐,但对新闻报道或文学作品具有艺术性、专业性的内容来说,是不能保证推送的质量的。算法方面,目前主要基于匹配检索与统计,大部分都是个人关注的信息类型和标签,难以达到较好的推送效果。一千个人眼里有一千个哈姆雷特,但是计算机只有只有一个。算法技术过于注重机械化的统计,只根据关键词来推荐用户,对我们中国具有博大精深的中国文字文化底蕴,推荐算法是远远不够的。整个新闻客户端显得像是一个菜市场,没有态度、没有风格,阅读感受单一化,呈现了碎片化的特点。新闻不只是让用户能够了解身边发生的新鲜事,还有宣传正面思想和传播正能量的作用,新闻应该还要给人们带来新的思考。让机器做出正确判断很简单,但是让机器综合心理学、社会学、乃至某细分领域内的规则做出判断还要正确地引导受众则很难,正如现在算法技术还不能完成一篇富有人文性、文学性和批判性的深度报道,它止步在了碎片式的、表层的传播范畴。
4.1.2 容易引起“信息茧房”效应
“信息茧房”这一概念是凯斯.桑斯坦在《信息乌托邦》一书中提出的。意指受众在过度的信息自我选择之中,这样会降低接触外界其他信息的可能,从而将自己的生活桎梏于蚕茧一般的“蚕房”中的现象。人们的信息领域会习惯性被自己的兴趣引导,信息窄化带来了受众对信息接收的单一性,这种单一性的可能会使受众陷入循环,加重受众信息同质化。
在互联网的普及初期,受众主要是从主流媒体和门户网站获取新闻信息,主流媒体能够保障新闻的质量;对于其他资讯的获取,由于技术的限制,此时的茧房并没有过度被放大,受众是有适当的自主选择性阅读新闻的。但到了如今以智能技术的互联网时代,情况发生了改变,信息茧房的现象越来越明显,用户被标签的情况下,算法系统进行大量的主动推送,使受众被动地成为信息的接收者。用户的阅读兴趣不可能涵盖所有的知识领域,算法分发的核心逻辑是根据用户的行为数据来进行精确推荐的,但同时算法又会自动过滤掉“不感兴趣”“不认同”的信息,实现“看我想看,听我想听”。在此过程中,因为算法技术的力量将用户的信息选择效果放大了倍数,进而将受众困住在信息茧房当中,受众也很难凭借自身力量打破茧房,甚至在不知觉中受到更多负面的影响。

4.1.3 算法推送的“伪中立性”
客观和全面是新闻伦理的基本要求,新闻从业者必须从可好信息源来获取真实的信息,以客观的态度反应现实。我们惯常认为,互联网技术服务商是技术中立者,不需要承担约束大众媒体的社会责任,然而当信息把关人又新闻编辑转变为算法工程师,传统的媒介伦理似乎已经失效。算法具有商业倾向性,“中立性”是算法平台用以逃避媒体责任的理由,给大众媒介造成传播乱象,如此一来更像是一场算法平台“肆意妄为又不想负责”的诡辩。
算法平台的信息源是经过选择和过滤的,“头条号”的内容占“今日头条”整个信息系统的绝大部分,然而在“人人都可以做新闻人”的时代,头条号平台是一个开放的网络媒介环境,存在大量的偏见和错误的认知。无论是“今日头条”平台设立的算法规则,还是其他爬虫的抓取的关键词,算法系统的信息源很多是具有目的性的、有偏见和非客观的信息,所以信息源不能直接作用于用户。因此,筛选算法系统的信息源与传统的人工编辑相比较,范围极广且很难把关,若算法被恶意利用,那么使整个传播系统将会被轻易控制。
4.1.4 算法推送里的“议程设置”
原议程设置功能揭示的重要内涵是:“受众对新闻的看法虽然被大众媒体议程设置功能所主导,但其更深刻的是议程设置给大众媒体新闻带来放大与延伸,从而使受众对新闻选择做出能动性修正,让受众在满足需求和媒介依赖中逐渐培养出的潜在认同感”。
推送算法技术在互联网平台的运用,使原来传统媒体主导的议程设置过程发生了变化,伴随着传播权的转移、公众参与度的提高和信息量剧增等原因导致议程设置功逐渐能减弱。过往传统新闻的内容是由编辑有选择地进行报道后再呈现在受众面前的,而个性化新闻推送是用户自己来选择看哪一方面的内容,而这一环节中,天然的技术赋权将传播权从传统媒体下放至平台的用户,使得受众和社会的连接无需依赖传统媒介,新闻媒体作为把关人的作用和议程设置功能都在减弱。
4.2 算法新闻治理缺陷下的算法权利异化
算法作为人工智能的基石之一,是“一种有限、确定、有效并适合用计算机程序来实现的解决问题的方法,是计算机科学的基础”。近年来,伴随人工智能深度学习算法取得的重大突破和大数据时代的到来,人工智能的应用场景不断拓展,人工智能时代正逐渐从想象成为现实。借助于海量的大数据和具备强大计算能力的硬件设备,拥有深度学习算法的人工智能机器可以通过自主学习和强化训练来不断提升自身的能力,解决很多人类难以有效应对的治理难题。伴随人工能算法在国家和社会治理中重要性的日渐凸显,国家和社会对于算法的依赖也逐渐加深,一种新型的权力形态——算法权力也随之出现。
可以把算法权利分为四种:数据主权、算法设计权、研发的资本权和算法控制权。由于前三种权利都是单向的、算法开发者赋予算法的权利,是属于算法开发者的,与算法分发平台呈现的效果没有直接的影响,所以本文将着重论述算法控制权。
算法控制权是双向的,用户是算法技术数据行为的提供者,同时又是被算法技术控制的受害者。例如我们看到“今日头条”会通过推送算法来监管用户的发布和浏览行为,同时平台会通过算法决策系统来实现内容的发布去引导用户。算法控制权当然是一种天然技术赋予的权利,但算法控制权是在用户提供数据行为的情况下才得以实现的,因此算法控制权既存在内容生产权,同时有要尊重和保护算法相对人的义务。
正因为如此,算法技术被认为是一种双刃剑,一方面算法能够做出精准的行为预测,可以为管理者提供非常好的循环干预机制;对于公共行为主体来说,可以通过对大数据的应用来解决社会治理问题,对于私人主体来说可以借助数据来提供个性化和定制化的服务;另一方面,算法技术存在着诸如利益和风险不对称等问题,而且由于算法技术发展的超前性,新科技的创造者具备不对称的信息和技术优势,能够按照自身利益的需求来塑造在平台上的算法推送逻辑和社会系统,这带来了监管的不确定性。人们要通过集体行为去承担社会责任,通过这样的方式规制算法权利,可以让我们能够对算法分发系统的意义和价值得到更深刻的思考。

‘伍’ 五好团支部标准

一、统一目标:

目标是团队的前提,没有目标就称不上团队,因为先有了目标才会有团队。有了团队目标只是团队目标管理的第一步,更重要的是第二步统一团队的目标,就是要让团队的每个人都认同团队的目标,并为达成目标而努力的工作。

二、统一的思想:

如果团队的思想不统一,你说东他说西,就像人在做思想斗争时会降低行动效率一样,团队思想不统一也会降低效率。

三、统一的规则:

一个团队必须有它的规则,规则是告诉团队成员该做什么,不该做什么,是规范团队行为的轨道,正如火车行驶一样,否则则脱轨,是不能安全达到目的地的,同时无规矩不成方圆,是一盘散沙,则不能称之为团队。

四、统一的行动:

一个团队在行动的时候要相互的沟通与协调,让行动统一有序,使整个流程合理的衔接,每个细节都能环环紧扣。统一行为才能产生聚合效应,达到指定的目标。

五、统一的声音:

团队在做出决策后声音一定要相同,不能开会不说,会后乱说,当面一套,背后一套。如果一个团队噪音太多会大大的降低团队的效率。在团队内部有观念的冲突是合理的,但在决定面前大家只能有一种声音,大家要严格的执行不能有不协调的声音。

(5)抓团算法扩展阅读

1、按时改选换届,民主选举产生支部班子,并依据工作需要配齐配好支部委员;

2、支部班子成员分工明确,团结协作,相互支持,班子凝聚力和战斗力强。支部书记的工作能力和水平得到基层党政领导和上级团组织的充分认可;

3、支部成员具有较强的政治业务素质和工作责任心,在团员青年中具有较高威信,能够在团员青年中发挥积极作用;

4、每月至少召开一次支委会,及时研究部署总结团的工作;

5、支部成员中至少有1名党员或预备党员。

‘陆’ 如何抓好团干部队伍建设

(一)、开拓思路,深入推进团的各项建设。
在新形势下,要进一步增强团组织的吸引力和凝聚力,充分发挥广大团员青年在生产经营、改革发展中的主力军和生力军作用,就必须着力加强和持续改进团的各项建设。
1、要加强团的组织体系建设。团的组织建设是团建的重要内容,是吸引青年、凝聚青年的基础。各级团组织要从加强团的基层组织建设入手,着重提高团组织的创新能力,既要大胆创新,敢于打破常规,用全新的思维方式建设团组织,又要立足于团组织的基础工作,扎实有效地开展各项工作。
2、要加强团的运行机制建设。逐步建立起适应公司发展、运转能力较强、管理科学规范、团员积极参与的运行机制。要加强团内民主,活跃组织生活,注重组织生活的质量,不搞形式主义,努力增强团组织的内在活力。要广泛征求团员青年的意见和建议,了解团员青年对组织的期望与要求,激发全体团员青年参与团内事务管理的积极性和创造性。各级团组织还要加强与本公司相关职能部门的交流与协作,积极为团员青年办好事、办实事。
3、要加强团的干部队伍建设。团干部是团组织建设中最重要的因素,直接影响着团组织的形象以及对青年的凝聚力。建设一支高质量、高效率、具有高度责任感的团干部队伍,是共青团事业发展的必然要求。要以加强团干部思想、作风建设为重点,切实加强团的干部队伍建设。要本着德才兼备的原则,客观认真地选拔团干部,科学合理地使用团干部,并协助各级党组织做好团干部的协管和转岗工作;要加大团干部的学习培训力度,积极为团干部丰富阅历、增强实力创造条件,并为其提供足够的施展空间;要在团干部队伍中形成争先创优的激励机制,塑造出一支作风过硬、运作高效的团干部队伍。
(二)、扎实工作,不断加强青年思想教育
加强青年思想政治工作,坚持对青年进行思想教育和正确引导,始终是做好共青团工作的根本。各级团组织要坚持把青年思想政治教育工作作为重点,采取积极有效的措施,切实抓紧抓好,抓出成效。
1、要树立社会主义荣辱观,切实加强对青年的思想引导。要以“树立荣辱观,创造新业绩”为主题,通过党课团课、组织生活、网上学习、座谈交流、知识竞赛等形式和手段,开展有声势、有深度的学习教育活动,进一步激发广大团员青年对“八荣八耻”的亲和力和认同感,引导青年坚定理想信念,树立正确的世界观、人生观和价值观;要采取行之有效、青年喜闻乐见的学习形式,使学习活动深入基层,深入团员青年之中,并把学习、实践“八荣八耻”重要观念与自身的工作实际紧密结合,与岗位实践紧密结合,与解决团员青年的思想问题紧密结合,用社会主义荣辱观指导青年的人生实践,引导广大团员青年为全面实现各项目标任务而奋斗;要以团干为重点,通过开辟学习贯彻“八荣八耻”重要观念专栏、组织撰写理论学习文章、组织开展学习培训等形式,使团干部成为深入学、持久学的表率,成为学有所成和学以致用的表率。
2、要创新工作的方式方法,切实加强对青年的舆论引导。要努力使青年思想政治工作贴近实际、贴近公司、贴近青年,切实增强青年思想政治工作的针对性和实效性。要注重选树、表彰和宣传一批做出积极贡献的青年先进典型,发挥青年先进集体和个人的示范带头作用。要注重针对青年思想政治工作中的热点、难点问题进行正确引导,营造健康向上、积极进取、奋发有为的舆论氛围。
(三)、创新形式,努力促进青年成长成才
发现、储备和培养一批高素质、复合型的青年人才,不仅是公司深化改革、加快发展、提高核心竞争力的现实需要,也是各级团组织的重要职责。团委注重结合青年实际,针对青年的需求与特点,为青年搭建学习平台,创造学习机会,竭诚为广大团员青年成长成才提供切实有效的服务。
1、要为青年学习服务。加强学习能力建设是共青团工作的重要任务,也是共青团组织必须具备的能力之一。各级团组织要高举“学习”旗帜,努力在创建“学习型组织”上下功夫。要制定学习计划,建立学习制度,完善学习机制。要结合公司发展对青年人才的需求,根据青年不同的兴趣爱好,组建各式各样的学习小组、兴趣协会和特长俱乐部,大力组织开展各具特色的学习活动,满足不同层次青年的需求。要积极为青年提供学习条件,创造学习机会,推动青年为公司的改革发展而发愤学习,使学习热潮不断兴起和持续高涨,从而锻造出一支热爱学习、追求超越的优秀青年队伍。
2、要为青年成才服务。要积极开展青年职业生涯导航设计,引导青年结合自身特点、兴趣,着眼于公司发展的总体目标,帮助青年树立学习、工作和人生的发展目标,实现青年自身发展和公司发展的紧密结合,把投身实践作为青年成长成才的重要途径,引导青年在实践中磨练意志、提高本领、增长才干。要加强青年人才库建设,积极为青年人才提供学习、锻炼和展示的机会,努力使团组织成为培养青年人才的课堂和凝聚青年人才的摇篮。要围绕提高团员青年的岗位技能和业务水平,广泛开展导师带徒、岗位练兵、技术培训等活动,不断提高青年的技术业务素质。
3、要为青年维权服务。各级团组织要切实代表青年的利益,反映青年的呼声,推动有关青年政策的制定和实施,引导青年参与公司的经营管理。要大力开展青年工作调研,认真研究新形势下公司青年和青年工作的发展变化,把握青年工作的规律,促进各项工作顺利开展。
团干部作风建设是共青团的基础性工作,这是一项长期的系统工程,务必持之以恒,常抓不懈。既要着眼当前,突出重点;又要考虑长远,全面推进。通过进一步加强团干部作风建设,使团干部素质有明显提高,基层组织建设有明显突破,服务青年群众有明显改进,各项工作有明显促进,从而进一步推进共青团事业向前发展。

‘柒’ 微信红包的随机算法是怎样实现的

我们在一个20人的群中,自己发红包以及结合其他人发出红包的情况,整合成两轮的数据。每次金额设置都是20块并且有20个,第一轮是发了15次,第二轮是发了19次,总结成表格,然后为了避免突发的数据影响判断,我们将两轮数据杂糅从而生成了其他的三轮数据,一共是五轮数据。罗列如下表,高亮的数据为最佳手气。每一列的数据最早抢到红包的在最底端,越往上越晚抢。
从所有黄色的数值(最佳手气金额)可看出,所有最佳手气值都在平均值*2的前后附近(平均值=总金额/红包总个数,这里平均值=20/20=1),事实上确实如此,可通过微信红包分发算法得到验证,算法具体见后文
然后我们选取部分数据开始制作散点图。横轴为1-20,分别表示抢到红包的人的编号,随递增而越早。也就是20代表最早抢到的人。纵轴为金额。同样的形状颜色的点代表一次发红包,然后我们抓取部分数据显示为散点图,越密集代表该顺序位的用户得到的金额越稳定。散点图如下:

规律一:我们可以看到,所有红包大多数金额分布在0.5到1.5元之间,显示为图中方框所示,大部分点都分布在这个位置。然后是顺序位密集程度的对比,可以发现20、19,也就是最先抢到红包的人,小圆圈所示基本的点都集中在小范围,说明先抢红包的人得到的金额会比较稳定,但同时最佳手气的概率也比较低。大圆圈所示的是极不稳定,飘忽的金额分布,表示越晚抢红包得到的金额会飘忽不稳,但同时,抢到最佳手气等大金额的红包概率也比早抢的高。
根据上面的分析,我们又写了一个过滤计数函数,针对金额的分段的红包个数进行统计:
比如2.0-2.5
得到如下金额分布:
折线图:
规律二:绝大多数的红包的金额都集中在1-1.5,也就是说20块钱发20个红包的金额分布集中在比平均数大一点点的附近,同时较大幅超过平均数金额的红包大大少于低于于平均数的红包数量。
那我们继续扩大数据的规模,将几轮数据的均值和标准差分别做成折线图:
综合上面各个折线图的情况,我们可以得到越早抢红包的标准差越小,越晚抢红包的标准差越大,但同时,由均值和总额可以看出来,越早抢红包的均值往往要更高,红包金额得到最佳手气概率也会相对较小,越晚抢红包的人则得到最佳手气等大手气的概率更大。
为了得到更为趋近规律的曲线和规律,我们决定将两轮真实数据合并起来,然后给出幂函数的趋近线(虚线),如下图:
由于均值受极值波动影响较大,所以我们去除一些因为偶然差产生的极端点(圆圈的点)从而发现是递增的趋势。
规律三:可以很明显的看到,均值是随着抢红包的越晚而缓慢递减,标准差值同时也往上递增,这个趋势结合之前的分析,我们猜想,即标准差越大说明,领取到最大的红包和最小红包的风险越大,也就是说越晚抢标准差越大,对于冒险主义者来讲是最好的,因为他有很大概率获得最大的金额,但也大概率获得最小的红包,风险与收益并存;均值越大,说明每次都拿到一个不大不小的红包,虽然获得最小和最大金额红包的概率很小,但起码不亏本,也就是说越早抢,均值越稳定,这比较适合不喜欢冒险的人。
验证预测结果:
21:24分发送预测结果到另一位同学微信:

随后开始发红包:

结果:
最佳手气为第8个人且金额为1.13
与预测结果一致,规律基本正确!
总结:
(1)最佳手气为1.13块,根据我们推导的预测公式=总额/红包总个数*2*随机数(0-2的double数), 也就是说最佳手气在总额/红包总个数*2值的前后附近。这里我们判断在0.8-1.3之间,推断正确
(2)平均值为0.5元,0.5-0.8元的红包有3个,小于0.5的红包有6个,说明大于平均值的红包个数多于小于平均值的个数。与我们的第二点预测完全正确
(3)最佳手气位置:根据我们的散点图发现,最先抢到红包的人,得到的金额会比较稳定,但同时最佳手气的概率也比较低。表示越晚抢红包得到的金额波动较大,但同时抢到最佳手气等大金额的红包概率也比早抢的高。所以我们推断,最佳手气位置在最后20%-30%之间。
微信红包随机分发算法c++模拟:
基本思路:每次抢到一个红包金额等于:红包剩余金额/红包剩余个数*2*随机数(0-1的double型),如果计算的结果小于等于0.01,则取0.01值
主要代码:
double packages[50000];
double Luckiest_money=0;
void getPackage(int remainSize,double remainMoney){
srand((unsigned)time(NULL));
for(int i=0;i

‘捌’ 数据挖掘中 聚类算法 数据集在什么地方获取的

之前写论文要用到大量的数据,在数据淘(datataotao) 下载了一个关系的数据 ,
我发现 数据淘上还是有很多真实的数据集的,可以看看

‘玖’ 蜘蛛爬虫的原理和作用

网络蜘蛛即Web Spider,是一个很形象的名字。把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛。
这个条目所描述的内容英文名叫做Web Crawler,这是有正规定义的,参见维基网络。业界内也很少叫蜘蛛的,一般都叫做网络爬虫,Spider只是个别爬虫的名称。建议将词条名称改为网络爬虫。
网络蜘蛛是通过网页的链接地址来寻找网页

网络蜘蛛
,从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址,然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止。如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来。
----这样看来,网络蜘蛛就是一个爬行程序,一个抓取网页的程序。

‘拾’ 如何理解网页分析算法

网页分析算法可以归纳为基于网络拓扑、基于网页内容和基于用户访问行为三种类型。
1 基于网络拓扑的分析算法
基于网页之间的链接,通过已知的网页或数据,来对与其有直接或间接链接关系的对象(可以是网页或网站等)作出评价的算法。又分为网页粒度、网站粒度和网页块粒度这三种。
1.1 网页(Webpage)粒度的分析算法
PageRank和HITS算法是最常见的链接分析算法,两者都是通过对网页间链接度的递归和规范化计算,得到每个网页的重要度评价。PageRank算法虽然考虑了用户访问行为的随机性和Sink网页的存在,但忽略了绝大多数用户访问时带有目的性,即网页和链接与查询主题的相关性。针对这个问题,HITS算法提出了两个关键的概念:权威型网页(authority)和中心型网页(hub)。
基于链接的抓取的问题是相关页面主题团之间的隧道现象,即很多在抓取路径上偏离主题的网页也指向目标网页,局部评价策略中断了在当前路径上的抓取行为。文献提出了一种基于反向链接(BackLink)的分层式上下文模型(Context Model),用于描述指向目标网页一定物理跳数半径内的网页拓扑图的中心Layer0为目标网页,将网页依据指向目标网页的物理跳数进行层次划分,从外层网页指向内层网页的链接称为反向链接。
1.2 网站粒度的分析算法
网站粒度的资源发现和管理策略也比网页粒度的更简单有效。网站粒度的爬虫抓取的关键之处在于站点的划分和站点等级(SiteRank)的计算。SiteRank的计算方法与PageRank类似,但是需要对网站之间的链接作一定程度抽象,并在一定的模型下计算链接的权重。
网站划分情况分为按域名划分和按IP地址划分两种。文献讨论了在分布式情况下,通过对同一个域名下不同主机、服务器的IP地址进行站点划分,构造站点图,利用类似PageRank的方法评价SiteRank。同时,根据不同文件在各个站点上的分布情况,构造文档图,结合SiteRank分布式计算得到DocRank。文献证明,利用分布式的SiteRank计算,不仅大大降低了单机站点的算法代价,而且克服了单独站点对整个网络覆盖率有限的缺点。附带的一个优点是,常见PageRank 造假难以对SiteRank进行欺骗。
1.3 网页块粒度的分析算法
在一个页面中,往往含有多个指向其他页面的链接,这些链接中只有一部分是指向主题相关网页的,或根据网页的链接锚文本表明其具有较高重要性。但是,在PageRank和HITS算法中,没有对这些链接作区分,因此常常给网页分析带来广告等噪声链接的干扰。在网页块级别(Blocklevel)进行链接分析的算法的基本思想是通过VIPS网页分割算法将网页分为不同的网页块(page block),然后对这些网页块建立pagetoblock和blocktopage的链接矩阵,分别记为Z和X。于是,在pagetopage图上的网页块级别的PageRank为Wp=X×Z;在blocktoblock图上的BlockRank为Wb=Z×X。已经有人实现了块级别的PageRank和HITS算法,并通过实验证明,效率和准确率都比传统的对应算法要好。
2 基于网页内容的网页分析算法
基于网页内容的分析算法指的是利用网页内容(文本、数据等资源)特征进行的网页评价。网页的内容从原来的以超文本为主,发展到后来动态页面(或称为hidden web)数据为主,后者的数据量约为直接可见页面数据(PIW,publiclyIndexable Web)的400~500倍。另一方面,多媒体数据、Web Service等各种网络资源形式也日益丰富。因此,基于网页内容的分析算法也从原来的较为单纯的文本检索方法,发展为涵盖网页数据抽取、机器学习、数据挖掘、语义理解等多种方法的综合应用。本节根据网页数据形式的不同,将基于网页内容的分析算法,归纳以下三类:第一种针对以文本和超链接为主的无结构或结构很简单的网页;第二种针对从结构化的数据源(如RDBMS)动态生成的页面,其数据不能直接批量访问;第三种针对的数据界于第一和第二类数据之间,具有较好的结构,显示遵循一定模式或风格,且可以直接访问。
2.1 基于文本的网页分析算法
1) 纯文本分类与聚类算法
很大程度上借用了文本检索的技术。文本分析算法可以快速有效的对网页进行分类和聚类,但是由于忽略了网页间和网页内部的结构信息,很少单独使用。
2) 超文本分类和聚类算法

热点内容
struts1ajax上传 发布:2024-10-31 13:18:58 浏览:637
coreldraw字体文件夹 发布:2024-10-31 13:17:08 浏览:271
oraclesql的用法 发布:2024-10-31 13:06:55 浏览:718
安卓图标怎么扩大 发布:2024-10-31 13:04:49 浏览:905
苹果机和安卓机哪个像素好 发布:2024-10-31 13:02:32 浏览:774
华为服务器ibmc设置ip 发布:2024-10-31 13:01:38 浏览:54
姓名测算法 发布:2024-10-31 12:56:39 浏览:542
如何设置录像机存储时间长短 发布:2024-10-31 12:55:44 浏览:119
除湿机的压缩机 发布:2024-10-31 12:54:44 浏览:501
javauriuri 发布:2024-10-31 12:51:56 浏览:903