当前位置:首页 » 操作系统 » 个数据库性能

个数据库性能

发布时间: 2022-06-03 01:47:25

Ⅰ 哪些因素影响了数据库性能

网络宽带,磁盘IO,查询速度都会影响到数据库的性能。

具体问题具体分析,举例来说明为什么磁盘IO成瓶颈数据库的性能急速下降了。

为什么当磁盘IO成瓶颈之后, 数据库的性能不是达到饱和的平衡状态,而是急剧下降。为什么数据库的性能有非常明显的分界点,原因是什么?

相信大部分做数据库运维的朋友,都遇到这种情况。 数据库在前一天性能表现的相当稳定,数据库的响应时间也很正常,但就在今天,在业务人员反馈业务流量没有任何上升的情况下,数据库的变得不稳定了,有时候一个最简单的insert操作, 需要几十秒,但99%的insert却又可以在几毫秒完成,这又是为什么了?

dba此时心中有无限的疑惑,到底是什么原因呢? 磁盘IO性能变差了?还是业务运维人员反馈的流量压根就不对? 还是数据库内部出问题?昨天不是还好好的吗?

当数据库出现响应时间不稳定的时候,我们在操作系统上会看到磁盘的利用率会比较高,如果观察仔细一点,还可以看到,存在一些读的IO. 数据库服务器如果存在大量的写IO,性能一般都是正常跟稳定的,但只要存在少量的读IO,则性能开始出现抖动,存在大量的读IO时(排除配备非常高速磁盘的机器),对于在线交易的数据库系统来说,大概性能就雪崩了。为什么操作系统上看到的磁盘读IO跟写IO所带来的性能差距这么大呢?

如果亲之前没有注意到上述的现象,亲对上述的结论也是怀疑。但请看下面的分解。

在写这个文章之前,作者阅读了大量跟的IO相关的代码,如异步IO线程的相关的,innodb_buffer池相关的,以及跟读数据块最相关的核心函数buf_page_get_gen函数以及其调用的相关子函数。为了将文章写得通俗点,看起来不那么累,因此不再一行一行的将代码解析写出来。

咱们先来提问题。buf_page_get_gen函数的作用是从Buffer bool里面读数据页,可能存在以下几种情况。

提问. 数据页不在buffer bool 里面该怎么办?

回答:去读文件,将文件中的数据页加载到buffer pool里面。下面是函数buffer_read_page的函数,作用是将物理数据页加载到buffer pool, 图片中显示

buffer_read_page函数栈的顶层是pread64(),调用了操作系统的读函数。


通过解析buf_wait_for_read函数的下层函数,我们知道其实通过首先自旋加锁pin的方式,超过设定的自旋次数之后,进入等待,等待IO完成被唤醒。这样节省不停自旋pin时消耗的cpu,但需要付出被唤起时的开销。

再继续扩展问题: 如果会话线程A 经过物理IO将数据页1001读入buffer之后,他需要修改这个页,而在会话线程A之后的其他的同样需要访问数据页1001的会话线程,即使在数据页1001被入读buffer pool之后,将仍然处于等待中。因为在数据页上读取或者更新的时候,同样需要上锁,这样才能保证数据页并发读取/更新的一致性。

由此可见,当一个高并发的系统,出现了热点数据页需要从磁盘上加载到buffer pool中时,造成的延迟,是难以想象的。因此排在等待热点页队列最后的会话线程最后才得到需要的页,响应时间也就越长,这就是造成了一个简单的sql需要执行几十秒的原因。

再回头来看上面的问题,mysql数据库出现性能下降时,可以看到操作系统有读IO。 原因是,在数据库对数据页的更改,是在内存中的,然后通过检查点线程进行异步写盘,这个异步的写操作是不堵塞执行sql的会话线程的。所以,即使看到操作系统上有大量的写IO,数据库的性能也是很平稳的。但当用户线程需要查找的数据页不在buffer pool中时,则会从磁盘上读取,在一个热点数据页不是非常多的情况下,我们设置足够大的innodb_buffer_pool的size, 基本可以缓存所有的数据页,因此一般都不会出现缺页的情况,也就是在操作系统上基本看不到读的IO。 当出现读的IO时,原因时在执行buf_read_page_low函数,从磁盘上读取数据页到buffer pool, 则数据库的性能则开始下降,当出现大量的读IO,数据库的性能会非常差。

Ⅱ 影响数据库性能的主要因素有哪些

以MySQL为例:

影响数据库性能的主要因素总结如下:

1、sql查询速度

2、网卡流量

3、服务器硬件

4、磁盘IO

以上因素并不是时时刻刻都会影响数据库性能,而就像木桶效应一样。如果其中一个因素严重影响性能,那么整个数据库性能就会严重受阻。另外,这些影响因素都是相对的。

例如:当数据量并没有达到百万千万这样的级别,那么sql查询速度也许就不是个重要因素,换句话说,你的sql语句效率适当低下可能并不影响整个效率多少,反之,这种情况,无论如何怎么优化sql语句,可能都没有太明显的效果。


相关内容拓展:

1、SQL查询速度

风险:效率低下的SQL

2、网卡流量

风险:网卡IO被占满(100Mb/8=100MB)

方案:

①减少从服务器的数量。从服务器都要从主服务器上复制日志,所以,从服务器越多,网络流量越大。

②进行分级缓存。前方大量缓存突然失效会对数据库造成严重的冲击。

③避免使用“select * ”进行查询

④分离业务网络和服务器网络

3、磁盘IO

风险:磁盘IO性能突然下降。

方案:使用更好的磁盘设备解决。

Ⅲ 衡量数据库性能的重要指标

具体来说,本文包括以下内容:

  • 事务

  • 查询性能

  • 用户和查询冲突

  • 容量

  • 配置

  • NoSQL 数据库

  • 事务

    事务可以观察真实用户的行为:能够在应用交互时捕获实时性能。众所周知,测量事务的性能包括获取整个事务的响应时间和组成事务的各个部分的响应时间。通常我们可以用这些响应时间与满足事务需求的基线对比,来确定当前事务是否处于正常状态。

    如果你只想衡量应用的某个方面,那么可以评估事务的行为。所以,尽管容器指标能够提供更丰富的信息,并且帮助你决定何时对当前环境进行自动测量,但你的事务就足以确定应用性能。无需向应用程序服务器获取 CPU 的使用情况,你更应该关心用户是否完成了事务,以及该事务是否得到了优化。

    补充一个小知识点,事务是由入口点决定的,通过该入口点可以启动事务与应用进行交互。

    一旦定义了事务,会在整个应用生态系统中对其性能进行测量,并将每个事务与基线进行比对。例如,我们可能会决定当事务的响应时间与基线相比,一旦慢于平均响应时间的两个标准差是否就应该判定为异常,如图1所示。

  • 图1-基于基线评估当前事务响应时间
  • 用于评估事务的基线与正在进行的事务活动在时间上是一致的,但事务会由每个事务执行来完善。例如,当你选定一个基线,在当前事务结束之后,将事务与平均响应时间按每天的小时数和每周的天数进行对比,所有在那段时间内执行的事务都将会被纳入下周的基线中。通过这种机制,应用程序可以随时间而变化,而无需每次都重建原始基线;你可以将其看作是一个随时间移动的窗口。

    总之,事务最能反映用户体验的测量方法,所以也是衡量性能状况最重要的指标。

    查询性能
    最容易检测到查询性能是否正常的指标就是查询本身。由查询引起的问题可能会导致时间太长而无法识别所需数据或返回数据。所以不妨在查询中排查以下问题。

    1. 选择过多冗余数据

    编写查询语句来返回适当的数据是远远不够的,很可能你的查询语句会返回太多列,从而导致选择行和检索数据变得异常缓慢。所以,最好是列出所需的列,而不是直接用 SELECT*。当需要在特定字段中查询时,该计划可能会确定一个覆盖索引从而加快结果返回。覆盖索引通常会包含查询中使用的所有字段。这意味着数据库可以仅从索引中产生结果,而不需要通过底层表来构建。

    另外,列出结果中所需的列不仅可以减少传输的数据,还能进一步提高性能。

    2. 表之间的低效联接

    联接会导致数据库将多组数据带到内存中进行比较,这会产生多个数据库读取和大量 CPU。根据表的索引,联接还可能需要扫描两个表的所有行。如果写不好两个大型表之间的联接,就需要对每个表进行完整扫描,这样的计算量将会非常大。其他会拖慢联接的因素包括联接列之间存在不同的数据类型、需要转换或加入包含 LIKE 的条件,这样就会阻止使用索引。另外,还需注意避免使用全外联接;在恰当的时候使用内部联接只返回所需数据。

    3. 索引过多或过少

    如果查询优化没有可用的索引时,数据库会重新扫描表来产生查询结果,这个过程会生成大量的磁盘输入/输出(I/O)。适当的索引可以减少排序结果的需要。虽然非唯一值的索引在生成结果时,不能像唯一索引那样方便。如果键越大,索引也会变大,并通过它们创建更多的磁盘 I/O。大多数索引是为了提高数据检索的性能,但也需要明白索引本身也会影响数据的插入和更新,因为所有相关联的指标都必须更新。

    4. 太多的SQL导致争用解析资源

    任何 SQL 查询在执行之前都必须被解析,在生成执行计划之前需要对语法和权限进行检查。由于解析非常耗时,数据库会保存已解析的 SQL 来重复利用,从而减少解析的耗时。因为 WHERE 语句不同,所以使用文本值的查询语句不能被共享。这将导致每个查询都会被解析并添加到共享池中,由于池的空间有限,一些已保存的查询会被舍弃。当这些查询再次出现时,则需要重新解析。

    用户和查询冲突
    数据库支持多用户,但多用户活动也可能造成冲突。

    1. 由慢查询导致的页/行锁定

    为了确保查询产生精确的结果,数据库必须锁定表以防止在运行读取查询时再发生其他的插入和更新行为。如果报告或查询相当缓慢,需要修改值的用户可能需要等待至更新完成。锁提示能帮助数据库使用最小破坏性的锁。从事务数据库中分离报表也是一种可靠的解决方法。

    2. 事务锁和死锁

    当两个事务被阻塞时会出现死锁,因为每一个都需要使用被另一个占用的资源。当出现一个普通锁时,事务会被阻塞直到资源被释放。但却没有解决死锁的方案。数据库会监控死锁并选择终止其中一个事务,释放资源并允许该事务继续进行,而另一个事务则回滚。

    3. 批处理操作造成资源争夺

    批处理过程通常会执行批量操作,如大量的数据加载或生成复杂的分析报告。这些操作是资源密集型的,但可能影响在线用户的访问应用的性能。针对此问题最好的解决办法是确保批处理在系统使用率较低时运行,比如晚上,或用单独的数据库进行事务处理和分析报告。

    容量
    并不是所有的数据库性能问题都是数据库问题。有些问题也是硬件不合适造成的。

    1. CPU 不足或 CPU 速度太慢

    更多 CPU 可以分担服务器负载,进一步提高性能。数据库的性能不仅是数据库的原因,还受到服务器上运行其他进程的影响。因此,对数据库负载及使用进行审查也是必不可少的。由于 CPU 的利用率时时在变,在低使用率、平均使用率和峰值使用率的时间段分别检查该指标可以更好地评估增加额外的 CPU 资源是否有益。

    2. IOPS 不足的慢磁盘

    磁盘性能通常以每秒输入/输出操作(IOPS)来计。结合 I/O 大小,该指标可以衡量每秒的磁盘吞吐量是多少兆。同时,吞吐量也受磁盘的延迟影响,比如需要多久才能完成请求,这些指标主要是针对磁盘存储技术而言。传统的硬盘驱动器(HDD)有一个旋转磁盘,通常比固态硬盘(SSD)或闪存更慢。直到近期,SSD 虽然仍比 HDD 贵,但成本已经降了下来,所以在市场上也更具竞争力。

    3. 全部或错误配置的磁盘

    众所周知,数据库会被大量磁盘访问,所以不正确配置的磁盘可能带来严重的性能缺陷。磁盘应该适当分区,将系统数据目录和用户数据日志分开。高度活跃的表应该区分以避免争用,通过在不同磁盘上存放数据库和索引增加并行放置,但不要将操作系统和数据库交换空间放置在同一磁盘上。

    4. 内存不足

    有限或不恰当的物理内存分配会影响数据库性能。通常我们认为可用的内存更多,性能就越好。监控分页和交换,在多个非繁忙磁盘中建立多页面空间,进一步确保分页空间分配足够满足数据库要求;每个数据库供应商也可以在这个问题上提供指导。

    5. 网速慢

    网络速度会影响到如何快速检索数据并返回给终端用户或调用过程。使用宽带连接到远程数据库。在某些情况下,选择 TCP/IP 协议而不是命名管道可显着提高数据库性能。

    配置

    每个数据库都需设置大量的配置项。通常情况下,默认值可能不足以满足数据库所需的性能。所以,检查所有的参数设置,包括以下问题。

    1. 缓冲区缓存太小

    通过将数据存储在内核内存,缓冲区缓存可以进一步提高性能同时减少磁盘 I/O。当缓存太小时,缓存中的数据会更频繁地刷新。如果它再次被请求,就必须从磁盘重读。除了磁盘读取缓慢之外,还给 I/O 设备增添了负担从而成为瓶颈。除了给缓冲区缓存分配足够的空间,调优 SQL 查询可以帮助其更有效地利用缓冲区缓存。

    2. 没有查询缓存

    查询缓存会存储数据库查询和结果集。当执行相同的查询时,数据会在缓存中被迅速检索,而不需要再次执行查询。数据会更新失效结果,所以查询缓存是唯一有效的静态数据。但在某些情况下,查询缓存却可能成为性能瓶颈。比如当锁定为更新时,巨大的缓存可能导致争用冲突。

    3. 磁盘上临时表创建导致的 I/O 争用

    在执行特定的查询操作时,数据库需要创建临时表,如执行一个 GROUP BY 子句。如果可能,在内存中创建临时表。但是,在某些情况下,在内存中创建临时表并不可行,比如当数据包含 BLOB 或 TEXT 对象时。在这些情况下,会在磁盘上创建临时表。大量的磁盘 I / O 都需要创建临时表、填充记录、从表中选择所需数据并在查询完成后舍弃。为了避免影响性能,临时数据库应该从主数据库中分离出来。重写查询还可以通过创建派生表来减少对临时表的需求。使用派生表直接从另一个 SELECT 语句的结果中选择,允许将数据加到内存中而不是当前磁盘上。

    NoSQL 数据库

    NoSQL 的优势在于它处理大数据的能力非常迅速。但是在实际使用中,也应该综合参考 NoSQL 的缺点,从而决定是否适合你的用例场景。这就是为什么NoSQL通常被理解为 “不仅仅是 SQL”,说明了 NoSQL 并不总是正确的解决方案,也没必要完全取代 SQL,以下分别列举出五大主要原因。

    1. 挑剔事务

    难以保持 NoSQL 条目的一致性。当访问结构化数据时,它并不能完全确保同一时间对不同表的更改都生效。如果某个过程发生崩溃,表可能会不一致。一致事务的典型代表是复式记账法。相应的信贷必须平衡每个借方,反之亦然。如果双方数据不一致则不能输入。NoSQL 则可能无法保证“收支平衡”。

    2. 复杂数据库

    NoSQL 的支持者往往以高效代码、简单性和 NoSQL 的速度为傲。当数据库任务很简单时,所有这些因素都是优势。但当数据库变得复杂,NoSQL 会开始分解。此时,SQL 则比 NoSQL 更好地处理复杂需求,因为 SQL 已经成熟,有符合行业标准的接口。而每个 NoSQL 设置都有一个唯一的接口。

    3. 一致联接

    当执行 SQL 的联接时,由于系统必须从不同的表中提取数据进行键对齐,所以有一个巨大的开销。而 NoSQL 似乎是一个空想,因为缺乏联接功能。所有的数据都在同一个表的一个地方。当检索数据时,它会同时提取所有的键值对。问题在于这会创建同一数据的多个副本。这些副本也必须更新,而这种情况下,NoSQL 没有功能来确保更新。

    4. Schema设计的灵活性

    由于 NoSQL 不需要 schema,所以在某些情况下也是独一无二的。在以前的数据库模型中,程序员必须考虑所有需要的列能够扩展,能够适应每行的数据条目。在 NoSQL 下,条目可以有多种字符串或者完全没有。这种灵活性允许程序员迅速增加数据。但是,也可能存在问题,比如当有多个团体在同一项目上工作时,或者新的开发团队接手一个项目时。开发人员能够自由地修改数据库,也可能会不断实现各种各样的密钥对。

    5. 资源密集型

    NoSQL 数据库通常比关系数据库更加资源密集。他们需要更多的 CPU 储备和 RAM 分配。出于这个原因,大多数共享主机公司都不提供 NoSQL。你必须注册一个 VPS 或运行自己的专用服务器。另一方面,SQL 主要是在服务器上运行。初期的工作都很顺利,但随着数据库需求的增加,硬件必须扩大。单个大型服务器比多个小型服务器昂贵得多,价格呈指数增长。所以在这种企业计算场景下,使用 NoSQL 更为划算,例如那些由谷歌和 Facebook 使用的服务器。

Ⅳ 数据库性能优化有哪些措施

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

(4)个数据库性能扩展阅读

数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。

数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

Ⅳ 如何优化数据库,如何提高数据库的性能

1、使你的数据库结构规范化,但是不要求一定达到第三范式,为了显示和打印目的可以有数据冗余2、评估你的系统中对性能影响的关键处,减少被频繁访问的核心表的数量,并在这些核心
表上重点优化索引,表结构(尽量紧凑)。典型的核心表是代码表。
3、对于统计类应用,如果可能应写成触发器和存储过程,这样就有可能把一个消耗大量时
间的统计运算分布到每INSERT,DELETE,或者UPDATE来处理,从而极大提高查询类操作的速度。

Ⅵ 数据库的优化以及如何提高数据库性能

1) 硬件调整性能
最有可能影响性能的是磁盘和网络吞吐量,解决办法扩大虚拟内存,并保证有足够可以扩充的空间;把数据库服务器上的不必要服务关闭掉;把数据库服务器和主域服务器分开;把SQL数据库服务器的吞吐量调为最大;在具有一个以上处理器的机器上运行SQL。
2)调整数据库
若对该表的查询频率比较高,则建立索引;建立索引时,想尽对该表的所有查询搜索操作, 按照where选择条件建立索引,尽量为整型键建立为有且只有一个簇集索引,数据在物理上按顺序在数据页上,缩短查找范围,为在查询经常使用的全部列建立非簇集索引,能最大地覆盖查询;但是索引不可太多,执行UPDATE DELETE INSERT语句需要用于维护这些索引的开销量急剧增加;避免在索引中有太多的索引键;避免使用大型数据类型的列为索引;保证每个索引键值有少数行。
3)使用存储过程
应用程序的实现过程中,能够采用存储过程实现的对数据库的操作尽量通过存储过程来实现,因为存储过程是存放在数据库服务器上的一次性被设计、编码、测试,并被再次使用,需要执行该任务的应用可以简单地执行存储过程,并且只返回结果集或者数值,这样不仅可以使程序模块化,同时提高响应速度,减少网络流量,并且通过输入参数接受输入,使得在应用中完成逻辑的一致性实现。
4)应用程序结构和算法
建立查询条件索引仅仅是提高速度的前提条件,响应速度的提高还依赖于对索引的使用。因为人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,特别是对数据量不是特别大的数据库操作时,是否建立索引和使用索引的好坏对程序的响应速度并不大,因此程序员在书写程序时就忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在数据量特别大时或者大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!
望采纳哟~

Ⅶ 数据库性能优化主要包括哪些方面

包括网络、硬件、操作系统、数据库参数和应用程序。

数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。

根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。

(7)个数据库性能扩展阅读

数据库性能优化法则归纳为5个层次:

1、减少数据访问(减少磁盘访问)

2、返回更少数据(减少网络传输或磁盘访问)

3、减少交互次数(减少网络传输)

4、减少服务器CPU开销(减少CPU及内存开销)

5、利用更多资源(增加资源)

由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。

任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。

Ⅷ 影响数据库性能的因素

影响数据库性能的因素
对于数据库爱好者们,数据库底层的各种细节,内幕,等待事件,隐藏参数等津津乐道,对于调整好一条SQL语句使之在查询优化器/查询引擎下能高性能运转具有巨大的满足感成功感,仿佛自己掌握了天下最有价值的真理,驾驭了天下最有难度的技术。但对于设计和开发出这个数据库系统的人来说,他们看到此情此景,只好躲在一边偷偷的笑了。那么问题来了,使用别人数据库的人被称为大师(如:OCM),那么自己写出一个数据库来的人又该称为什么呢?到底谁才是真正的高手呢?
数据库系统优化中的一些观点:
“系统性能出现问题进行优化,一定要深入了解数据库内部参数、等待事件、Latch、缓冲池、trace文件、查询/优化引擎等底层细节。”
这种观点往往出自数据库“高手”,这部分人以了解数据库底层实现细节而感到非常骄傲。但是从优化角度讲数据库的等待事件、Latch等指标高等等都只是问题的表象,懂得底层细节和内幕固然是好。但是解决问题的关键往往是在应用层进行优化。
“只要系统参数调整了,性能就能提高。系统优化应该调整那些参数…”
这种观点往往出自于一些偏运维和应用层的DBA,迷恋参数配置来调优。
调整系统参数是非常重要的,但不一定能解决性能问题,否则就不会有去IOE了,问题可能性最大的还是应用设计和开发问题。
同理,很多运维人员和系统架构师比较迷恋“Linux系统调优”。认为对“文件句柄数、磁盘子系统…”那些做了优化,就能提升整个应用系统的性能。其实不然。有些场景下,针对业务特点和应用类型做操作系统调优是能取到立竿见影的效果,但是大多数时候往往提升并不明显。所以最关键的还是找出瓶颈所在,对症下药。*/
“系统性能问题需要从架构上解决,与应用开发关系不大。”
系统性能与各个层面都有关,架构很重要,但应用开发也是非常重要的一环。
影响数据库性能的因素
1.业务需求和技术选型
2.应用系统的开发及架构
3.数据库自身
3.1表结构的设计
3.2查询语句
3.3索引设计
3.4Mysql服务(安装、配置等)
3.5操作系统调优
3.6硬件升级(SSD、更强的CPU、更大的内存)
4.数据架构(读写分离、分库分表等)
在很多情况下,数据库可能是互联网应用系统的瓶颈。但是单纯从数据库角度去做优化,可能未必能达到理想的效果。
说点题外话,最近看到很多公司使用中间件或者分布式数据访问层来做数据库分片,说明也许该公司业务发展很快。但另一个方面,也令人担忧,他们的数据库压力真的已经到了必须切分不可的程度了吗?分库分表真的像科普的那么简单吗?他们能搞定分库分表带来的成本和问题吗?有没有更合适的优化方法呢?
当然是有的。其实“过度设计”和“提前优化”就是系统万恶之源。

Ⅸ 数据库的性能方面的东西

1.应该是根据所建立信息系统客户的人数、预算的总数据量、平均访问量选择数据库。
2.性能指标就比较多了,你可以考虑一下数据库的可移植性(适用于不同的操作系统平台),数据库的并发性(同时操作一条数据或者一张表时数据的锁定方式),还有就是数据库的恢复能力(在出现异常数据能够最快完成恢复及备份的时间)。 --还有安全性,这个也很重要

300个人左右的b/s系统我推荐db2,并发性比sqlserver高,你要用常用的话甲骨文也可以,一般c/s系统都用sqlserver(中),access、mysql(小)

如果要说特点,真的是太多了,10000个字都不够写,你如果要买他们的产品,可以上网站或者找售前帮你

价格的话:sqlserver正版的大概就是10来万,db2要买服务,基本一年是15万到20万(基本服务),面向的应用我上面说了,b/s系统适合db2和甲骨文

这个性能是无法度量的,还要看你应用的情况,db2的应用最大的数据量理论上可以上亿,只要你数据库设计得合理,软件可以不要钱,基本服务一年是15到20万,不包括数据仓库,软件就是靠的增值服务,但是你不买服务就没有技术支持,而且商用的话你也有风险

如果你非要把其他搜到的东西列在这里,什么具体性能指标也没什么意义,还不如看ibm的db2白皮书,以我的经验来看,你应用在300个人在500个人的在线量,百万条数据,同时访问数据库,用db2不存在什么大的负载,非要说什么特点的话,就是一个字贵,db2的硬件的要求比较高,最好能上存储.

sqlserver存在一些安全性问题,而且大多数都运行在windows平台,对安全性的要求都不一样,你去了解一下aix就知道了

Ⅹ 数据库的性能优化有哪些

在数据库优化上有两个主要方面:
安全:数据可持续性。
性能:数据的高性能访问。
优化的范围有哪些
存储、主机和操作系统方面:
主机架构稳定性
I/O 规划及配置
Swap 交换分区
OS 内核参数和网络问题
应用程序方面:
应用程序稳定性
SQL 语句性能
串行访问资源
性能欠佳会话管理
这个应用适不适合用 MySQL
数据库优化方面:
内存
数据库结构(物理&逻辑)
实例配置
说明:不管是设计系统、定位问题还是优化,都可以按照这个顺序执行。
数据库优化维度有如下四个:
硬件
系统配置
数据库表结构
SQL 及索引
优化选择:
优化成本:硬件>系统配置>数据库表结构>SQL 及索引。
优化效果:硬件<系统配置<数据库表结构

热点内容
定压补水装置如何配置 发布:2025-01-10 18:12:34 浏览:429
安卓是华为的什么 发布:2025-01-10 18:12:27 浏览:539
pythonsetget 发布:2025-01-10 17:53:12 浏览:852
买脚本多少钱 发布:2025-01-10 17:52:34 浏览:934
文件夹万能解密器破解版 发布:2025-01-10 17:48:12 浏览:463
荣耀v30跟荣耀50哪个配置高 发布:2025-01-10 17:43:00 浏览:239
php发布系统 发布:2025-01-10 17:34:17 浏览:366
dnf刷疲劳脚本 发布:2025-01-10 17:33:39 浏览:350
海豚php框架 发布:2025-01-10 17:30:27 浏览:227
数据聚合算法 发布:2025-01-10 17:30:27 浏览:987