当前位置:首页 » 操作系统 » 回溯法算法

回溯法算法

发布时间: 2022-06-01 22:58:58

⑴ 求C语言中的回溯法,举一个简单的小例子,说明回溯法的运行过程!

比如八皇后问题,要在8×8的棋盘上放置8个皇后,使8个皇后不相互攻击,即使所有皇后不能位于同一横行、同一竖行或同一斜行。我们在程序中,首先考虑在第一列放置第一个皇后的情况,有8种放法。接下来考虑在第二行放第二个皇后,也是有8种放法,但是有一些放法是不合法,因为这些方法使第一个皇后和第二个皇后相互攻击了。对于这样一些产生了矛盾的算法,我们必须马上把它和它的解空间子树剪掉,这就是“剪枝”。如果发现在第j列放置第j个皇后的所有情况都会与前面出现矛盾时,那这时候我们要回到第j-1列,考虑换一个位置放第j-1个皇后,这就是回溯。
以上答案,纯粹逐字打出来的。有不懂可以追问。

⑵ 回溯算法的基本思想

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。八皇后问题就是回溯算法的典型,第一步按照顺序放一个皇后,然后第二步符合要求放第2个皇后,如果没有位置符合要求,那么就要改变第一个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了。回溯在迷宫搜索中使用很常见,就是这条路走不通,然后返回前一个路口,继续下一条路。回溯算法说白了就是穷举法。不过回溯算法使用剪枝函数,剪去一些不可能到达 最终状态(即答案状态)的节点,从而减少状态空间树节点的生成。回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

java回溯法如何执行

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 1、回溯法的一般描述 可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。 解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。 我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>j。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。 回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造: 设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。 因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。 在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。 例如n=5,r=3的所有组合为: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 则该问题的状态空间为: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 约束集为: x1<x2<x3 显然该约束集具有完备性。 问题的状态空间树T: 2、回溯法的方法 对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为: 从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。 在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。 例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。 3、回溯法的一般流程和技术 在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程: 在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。

⑷ 什么是回溯算法

回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为: 1、定义一个解空间,它包含问题的解。 2、利用适于搜索的方法组织解空间。 3、利用深度优先法搜索解空间。 4、利用限界函数避免移动到不可能产生解的子空间。 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。 1.跳棋问题: 33个方格顶点摆放着32枚棋子,仅中央的顶点空着未摆放棋子。下棋的规则是任一棋子可以沿水平或成垂直方向跳过与其相邻的棋子,进入空着的顶点并吃掉被跳过的棋子。试设计一个算法找出一种下棋方法,使得最终棋盘上只剩下一个棋子在棋盘中央。 算法实现提示 利用回溯算法,每次找到一个可以走的棋子走动,并吃掉。若走到无子可走还是剩余多颗,则回溯,走下一颗可以走动的棋子。当吃掉31颗时说明只剩一颗,程序结束。 2.中国象棋马行线问题: 中国象棋半张棋盘如图1(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如 图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为: 0,0->2,1->3,3->1,4->3,5->2,7->4,8… 算法分析: 如图1(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为: 1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7) 3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8) 搜索策略: S1:A[1]:=(0,0); S2:从A[1]出发,按移动规则依次选定某个方向,如果达到的是(4,8)则转向S3,否则继续搜索下 一个到达的顶点; S3:打印路径。 算法设计: procere try(i:integer); {搜索} var j:integer; begin for j:=1 to 4 do {试遍4个方向} if 新坐标满足条件 then begin 记录新坐标; if 到达目的地 then print {统计方案,输出结果} else try(i+1); {试探下一步} 退回到上一个坐标,即回溯; end; end;

⑸ 计算机十大经典算法有哪些

再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,逆着这个行进方向,从终点向始点计算,在选定系统行进方向之后,常比线性规划法更为有效,由每个阶段都作出决策,从而使整个过程达到最优化。所谓多阶段决策过程,特别是对于那些离散型问题。实际上,动态规划法就是分多阶段进行决策,其基本思路是,原问题的解即子问题的解的合并
不好意思啊,就是把研究问题分成若干个相互联系的阶段,逐次对每个阶段寻找某种决策,用来解决多阶段决策过程问题的一种最优化方法,就是把一个复杂的问题分成两个或更多的相同或相似的子问题:按时空特点将复杂问题划分为相互联系的若干个阶段。字面上的解释是“分而治之”动态规划法[dynamic
programming
method
(dp)]是系统分析中一种常用的方法。在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。动态规划法是解决此类问题的有效方法。动态规划法是20世纪50年代由贝尔曼(r,使整个过程达到最优.
bellman)等人提出。许多实际问题利用动态规划法处理,故又称为逆序决策过程。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
在计算机科学中,分治法是一种很重要的算法

⑹ 简述回溯法的2种算法框架,并分别举出适合用这两种框架解决的一个问题实例

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束

一般表达
可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。
解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。

规律
我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<=i)元组(x1,x2,…,xj)一定也满足d中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反d中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反d中仅涉及到x1,x2,…,xi的一个约束,n≥i≥j。因此,对于约束集d具有完备性的问题p,一旦检测断定某个j元组(x1,x2,…,xj)违反d中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题p的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

热点内容
2019速腾买什么配置好 发布:2025-01-11 01:35:07 浏览:828
博越存储异常 发布:2025-01-11 01:24:31 浏览:917
我的世界还原中国服务器版图 发布:2025-01-11 01:18:45 浏览:383
pythonopenasfile 发布:2025-01-11 01:17:06 浏览:972
hbasejavaapi 发布:2025-01-11 01:11:09 浏览:746
我的世界pe版饥饿服务器 发布:2025-01-11 01:09:39 浏览:485
异构数据库数据同步 发布:2025-01-11 01:09:04 浏览:957
c语言三角波 发布:2025-01-11 01:02:11 浏览:78
php正则转义 发布:2025-01-11 01:00:03 浏览:691
手拉的箱包上的密码锁一般是多少 发布:2025-01-11 00:59:55 浏览:8