逼近式算法
⑴ 智能大电流发生器
武汉创亿电气设备有限公司 CYSL 智能大电流发生器是电力、电气行业在调试中需要大电流场所的必需设备,应用于发电厂、变配电站、电器制造厂及科研院所等部门,属于短时或断续工作制,具有体积小、重量轻、使用维修方便等特点。
产品特点
● 320×240液晶显示器、高速热敏打印机
● 高精度传感器和高性能14位AD采集芯片
● 人机对话全键盘操作方式,智能化工作全过程
● 任选自动升流试验、手动升流试验和冲击速断试验,操作灵活简单
● 实时显示输出电流,时间结果,显示直观明了
● 完善的过流保护,任意设定目标输出电流值、电流上限和耐流时间
● 具有接地检测功能和回零检测功能,接地和回零确定后才可进行试验,安全可靠
● 逼近式升流算法,到达设定目标输出电流后自动耐流计时,计时结束后电机自动回零
● 超过设定输出电流上限,电机自动回零,并发生声光报警
● 精良的软硬件抗干扰设计,多种抗干扰手段,适应恶劣电磁环境
● 自动错误诊断,易于发现和解决问题
● 可选配远程通信、门联锁警灯警铃、开口电压校验接口等
技术指标
● 输入电压: AC220V±10% 50Hz±1
● 输出电流: 0-1.50kA(按客户需求可定制)
● 输出容量: 0-5kVA
● 耐流计时范围: 0-999S
● 冲击计时范围: 0-999mS
● 环境温度: -20℃至50℃
● 电流精度 ≤1.0% (F.S)
⑵ 大电流发生器有哪些型号规格
大电流发生器型号规格
回答者:三新电力
⑶ 我国数学家刘徽采用正多边形面积逐渐逼近圆面积的算法计算派这种算法是什么算法
前人的成就功不可没,后人的误导会给人带来困扰。由于无穷大和无穷小都是无限的,所以无限的里面根本没有无穷大当中最大的极限或无穷小当中最小的极限。也就是说:无限无穷无极限。
因为派是根据正六边形倍边成正6x2ⁿ边形推出的应该它叫正6x2ⁿ边率,正6x2ⁿ边率是由倍边公式的算法得到的。所以采用正多边形面积逼近圆面积(其实是逼近正6x2ⁿ边形面积)的算法,结果依然是正6x2ⁿ边率,并非圆周率。派采用什么算法并不重要。重要的是,不用派也可以计算:圆面积、圆周长等与派有关的公式。
⑷ 椭圆周长的近似公式怎么推来的
请看下面文段的第五大点:
学术研究
关孝和着作很多,近20部,但生前只出版过一部《发微算法》(1674),死后又由其弟子对他的遗稿作了整理,出版了《括要算法》,其余均为未出版的稿本.从这些着作的写作时间来看,孝和的数学研究工作可分为两个阶段,他的数学着作基本上是在1685年以前完成的,以后因体弱多病而较少进行新的数学研究,只写了一些天文历法方面的注释书.下面介绍他的主要贡献.
1.引入“傍书法”和代数记号而创立了“演段术”
这是关孝和的最大贡献.主要集录于他的着作《发微算法》(1674)及《三部抄》中的《解见题之法》和《解伏题之法》(1683).在《发微算法》中,孝和运用演段术对日本数学家泽口一之(有资料说泽口一之是孝和的弟子)的《古今算法记》(1671)中的15道“遗题”作了分析和解答.但书中只有结果而把有关演段术的记述略去了,所以当时的日本人对他的解答一般都看不懂,于是就有人指责说《发微算法》可能是关孝和胡编乱造的.1680年,日本数学家佐治一平竟写成《算法入门》指出《发微算法》中解法的“错误”并给予“订正”.作为对此类问题的答复,孝和的弟子建部贤弘写成《发微算法演段谚解》(1685)公诸于世,对孝和的演段术作了详细解说,使之传播开来.
孝和又在《三部抄》中阐述了“傍书法”和演段术.《三部抄》是《解见题之法》、《解隐题之法》(1685)和《解伏题之法》(1683)三部着作的总称.见题是只用加减乘除即可解答的问题,隐题是只用一个方程就可以解答的问题,伏题是必须用两个以上方程组成的方程组才能解答的问题,这也是三部着作各自名称的来历.《解见题之法》中首次出现傍书法表示的式子.所谓傍书法即在一条短竖线旁边写上文字作为记号来表示数量关系的一种方法.如“甲加乙”、“甲减乙”、“甲
乘乙”分别写成“|甲|乙”、“|甲乙”、“|甲乙”;甲2,甲3,甲4,…
将“甲÷乙”记为“乙|甲”.
孝和就用上述一套符号来处理文字方程,比如方程
甲-乙×x+丙×x2+丁×x3=0
表示为
|甲乙|丙|丁.
如果一个方程有两个未知数,如
3y3+5xy2+8x2y+4x3=0,
就用“甲”代替y,整个方程表示为
由于“傍书法”可以表示含有两个或者多个未知数的方程,因而“消元”就有了可能,这使得孝和能够用消元法解方程组,从而得出了他的行列式理论.这些内容集中在《解伏题之法》中.书中介绍了一系列以傍书法为基础的算法,他称之为“天元演段术”,后来又扩展为“归源整法”.这一系列的算法传到孝和的第二代弟子松永良弼时,良弼又受其主君内藤政树(1703—1766,“关流”和算家)之命将“归源整法”更名为“点窜术”.点窜术就是用上述的傍书法系统地研究公式变形、解方程(组)、行列式等问题,内容相当于现在的初等代数学.但由于这种代数学不同于西方代数中用a,b,c,…作为记号而采用汉字加短竖线作为记号,因而不仅是日本的而且是整个汉字文化圈内的文化财富,是具有东方风格的符号代数.
2.提出代数方程变换理论和行列式理论
这一研究集中在《解伏题之法》中.书中介绍的方程变换的方法有:略、省、约、缩、叠、括等.把一个方程乘以某一式后从另一方程中减去,称之为“略”;一个方程各项有公因式的就将此公因式约去,称之为“省”;各项有共同的数字系数(他称之为“段数”)时就约去这个公因数,他称之为“约”;两个方程中都不含未知数x的奇次幂时,就用换元法把x2作为一个未知数从而简化方程,称之为“缩”;“叠”是两个方程分别乘以适当的式子再相减以消去某些项;“括”是把相同次幂的系数合起来,即合并同类项.孝和的演段术在这些方法中得到了明确表示.
他用这些方法解方程组的基本思想是,将两个二元方程经过上述变换消去一个未知数,得到一个一元方程,再解这个一元方程.对于二元高次方程组(设两个方程关于x的次数分别是m和n,m≥n,这时方程中每一项中x的幂的系数都是另一未知数y的多项式),为达到一次消元的目的,他先用叠、括方法从原来的两个方程中导出n个关于x的n-1次方程,这些方程都写成标准形式,即方程右边为0,左边按x的升幂排列,他称这n个方程为“换式”.于是求解原方程组的问题就转化为求解由换式构成的方程组了.将这个方程组的各项中x的幂去掉,得到各项系数(y的多项式或单项式)按原来的位置次序构成的行列式,令这个行列式等于0,得到的这个行列式表示出的关于y的方程即是原方程组消去x后得到的一元方程.这样,解原方程组的问题就转化为解这个一元方程的问题.
为了对这个含有行列式的方程化简、求解,他接着对行列式进行变换.他的行列式理论就是由此引出的.他在书中介绍了两种计算行列式值的方法:逐式交乘法和交式斜乘法.
逐式交乘法的基本思想是,对行列式的各行分别乘以适当的式子,再将各列元素相加,直到除第一列(即x0的系数对应的那一列)外,其余各列元素的和均为零,这时第一列元素的和即为行列式的值.
当行列式阶数较高时,要看出上述各行要乘的因式显然不容易,于是,他在书中又介绍了另一种计算行列式的方法即交式斜乘法.不过他没有说明这种方法的根据,只是对2—5阶行列式的展开给出了规则并用图加以说明.从这些说明看出,他的交式斜乘法大致相当于今天中学里介绍的对角线法或其扩展.
西方对于行列式的研究首次出现在G.W.莱布尼茨(Leibniz)1693年写给G.F.A.洛比达(L’Hospital)的信中,而孝和的《解伏法之法》是1683年完成的,所以孝和的研究比西方的此类研究至少要早10年.西方最早发表的关于行列式研究的着作是G.克莱姆(Cramer)的《代数曲线的分析引论》(Intro-ction àl’analyse des lignes courbes algébriques,1750),这比《解伏题之法》要晚70年.在行列式方面,关孝和的研究是世界领先的.
3.研究了数字系数高次方程,发现了负根、虚根并提出了判别式概念和相当于多项式函数导函数的多项式
关孝和的这些成就主要包含在《解隐题之法》、《开方算式》及着作集《七部书》中.《七部书》是《开方翻变之法》(1685)、《题术辨议之法》(1685)、《病题明致之法》(1685)、《方阵圆攒之法》(1683)、《算脱验符之法》、《求积》、《毬阙变形草解》这七部着作的总称.
《解隐题之法》、《开方翻变之法》和《开方算式》中记述了解数字系数高次方程的两种近似方法,分别相当于“霍纳法”和“牛顿迭代法”.孝和又将这些解法用在字母系数方程f(x)=a0+a1x+a2x2+…+anxn=0上,从形式上求出了f′(x)=a1+2a2x+…+nanxn-1,即从形式上求出了多项式函数f(x)的导函数.另外,他考察了只有虚根的方程(他称其为“无商式”)、只有负根的方程(他称其为“负商式”)和方程正、负根的个数问题,给出了判别式的概念,研究了方程正、负根存在的条件.在《题术辨议之法》和《病题明致之法》中,他将导出方程是“无商式”和“负商式”的问题归入“病题”之列,利用他对数字系数方程的研究介绍了变换“予量”而纠正“病题”的方法.
对于无商式f(x)=0,他主要是变更方程的系数使其判别式取一定的数值,从而使得方程有正根或负根.这样的变换中又得出了f(x)取极大值(或极小值)的条件f′(x)=a1+2a2x+…+nanxn-1=0,由此式求出极值点x0,再代入f(x)可以求出极大值(或极小值).这是今天通用的求极值方法的雏形,孝和称其为“适尽方级法”.这种求极值方法是关孝和独立发现的.
4.将中国的“三差之法”推广为一般的招差法,研究了数论问题并发明“零约术”
这些成果都集中在《括要算法》中.孝和去世之后,其遗稿全部传给了弟子荒木村英(1640—1718).据说,村英与孝和本来同学于高原吉种门下,后来他又拜孝和为师,由于其在同门弟子中学德俱高,所以得到了孝和的全部遗稿.可是当时村英已年高体弱,就把整理孝和遗稿的工作交给自己的弟子大高由昌.大高由昌从遗稿中抽出数篇编辑成《括要算法》,村英为此作序,并于1712年出版.孝和的有关单行本至今尚存,与此比较看出,大高由昌在编辑时并没有作多大改动.只是孝和原稿中的“诸约之法”不包括“翦管术”,而《括要算法》中将“翦管术”列于“诸约之法”中.
(1)招差法 这是由x=x1,x2,…,xn和相应的y=y1,y2,…,yn两组数据确定函数y=a1x+a2x2+…+anxn的系数的方法,相当于西方数学中的有限差分法.孝和的方法如下:
乘积.
若所有平积相等,就有a3=a4=…=0,这时可取a2=δz1,a1=z1-a2x1,这时的招差法称为“一次相乘之法”.若所有的立积都相等,则a4=a5=…=0,可取a3=δ2z1,再计算zi-a3x2i=ui(1≤i≤n),它是u=a1+a2x在x=xi处的值,再对此施行“一次相乘之法”可得a2,a1的值.依此类推.
关孝和称a1,a2,…,an这些系数为“差”,求这些差为“招差”.上述求差的方法就是他的招差法.
对于n=2,3,4的情况,求f(x)=a1x+a2x2+…+anxn系数的问题早在中国数学中已得到解决,孝和的贡献主要在于将这种“三差之法”推广到了n为任意自然数的一般招差法.
(2)约术及垛术 他叙述的“约术”有互约、逐约、齐约、遍约、增约、损约、零约、遍通等.其中“逐约术”是给出n个整数a1,a2,…,an,确定各自的一个约数a′1,a′2,…,a′n,使这n个约数两两互素且其和等于a1,a2,…,an的最小公倍数.n=2时,他把“逐约术”又称为“互约术”.“齐约”是求整数的最小公倍数.“遍约”是用整数的最大公约数分别去除这n个整数.“遍通”是分数通分.“增约”是求级数a+ar+ar2+…的和,“损约”是求级数a-ar-ar2-…的和.“剩一术”是解一次不定方程ax-by=1的方法.除“增约”和“损约”之外,这些都是数论的内容.
“零约术”是孝和的发明.它是一种确定无限不循环小数的近似分数的方法.在书中他用例子对零约术作了说明.比如边长为1尺的正方
取p1=1,q1=1,按下述规则确定后面的pn,qn.若
n,而相应的pn依次是1,3,4,6,7,9,10,11,13,14,16,17,18,20,21,23,24,26,27,28,30,31,33,34,35,37,38,40,41, 43, 44,45, 47,48,50,51,52,54,55,57,58.于是有
它们都出现在上述的近似分数列中.
在《括要算法》最后一卷(贞卷)中,他用自己发明的这种零约术
给出,但他是怎样得到的呢?这一点却没有流传下来.孝和的这一工作给出了一种推导方法.
《括要算法》的第一卷(元卷)中还记述了“垛术”问题,即求
和Sp=1p+2p+3p+… +np(他称其为“方垛积”)与求和
对于方垛积,他用招差法计算出了p=1,2,3,…,11的情况,然后归纳得出了方垛积一般公式:
对于衰垛积,他也给出一般公式:
值得注意的是,方垛积公式中的B1,B2,…,Bn,…与伯努利数一样.而西方第一部导入伯努利数并给出上述公式的书是数学家雅格布·伯努利(Jacob Bernoulli)的《猜度术》(Ars conj-ectandi,1713).可见关孝和与伯努利几乎同时发现了伯努利数.
(3)翦管术 数论方面,他还研究了翦管术,即解同余式组b1x≡a1(mod m1), b2x≡a2(mod m2),…,bnx≡an(mod mn)的方法.《括要算法》第二卷(亨卷)的“翦管术解”部分举出九个问题说明这种方法,前五个是b1=b2=…=bn=1的情况,根据m1,m2,…,mn是否两两互素而分为两种情况给出了解法;后四个问题都是b1,b2,…,bn不全为1的情况,利用逐约术和剩一术给出了解法.
翦管术的名称和问题形式在中国宋代杨辉的着作集《杨辉算法》中就有记述,但杨辉解决的同余式组只限于b1=b2=…=bn=1,且m1,m2,…,mn两两互素的情况,而且由于所举的例子涉及的数据都比较简单,往往是只靠心算就可以解决,而不用剩一术.可以说,孝和是从《杨辉算法》中得到了翦管术的名称和问题形式,但他由于发明了剩一术,又引入了逐约、互约概念,因而对m1,m2,…,mn不全两两互素的情况和b1,b2,…,bn不全为1的同余式组问题也完满地解决了.因此可以说是关孝和发展完善了翦管术.
5.给出了一些曲线求长和立体求积的近似方法
这些研究主要集中在《解见题之法》、《求积》及《毬阙变形草解》中.其中创新性的成果在于他给出了椭圆周长、阿基米德螺线长的近似算法,解决了圆环体、弧环体和十字环的近似求积问题.
(1)椭圆周长与阿基米德螺线长 《解隐题之法》中第一次出现椭圆周长的近似算法.他将椭圆看成是从不同角度看圆时得到的图形,得出椭圆周长L的近近似计算公式:
L2=π2(长径×短径)+4×(长径-短径)2.
此书中还解决了“畹背”问题,即求所谓“畹形”长度的问题.如图1,将扇形OAB用半径OC1,OC2,…,OCn-1 n等分,再将半径OA用C′1,C′2,…,C′n-1 n等分,经过OA的各分点以O为圆心分别画弧,得到过C′k点的弧与半径OCk的交点Dk(0≤k≤n,记O点为D0,A点为Dn),Dk点的轨迹即是“畹形”.可见,畹形就是阿基米德螺线.他给出畹形长(背)的计算公式:
至于他是如何得到这个公式的,书中没有说明.
(2)圆环体、弧环体和十字环的体积 所谓圆环体是圆绕其所在平面上与圆没有公共点的一条直线旋转一周所得到的立体;弧环体则是由弓形绕其所在平面上与弓形没有公共点的一条直线旋转一周所得的立体.关孝和设想,把圆环体截断伸直,圆环体就变成圆柱,因此圆环体的体积就等于这个截面(圆面)的面积乘以这个“圆柱”的高(即圆环体的“中心圆”周长).他这样计算是假定了“圆环体经截断伸直成圆柱后体积不变”,以此假定为基础,他用弓形的面积乘以弧环体的中心圆周长作为弧环体的体积.这里所说的中心圆是指在圆(或弓形)旋转过程中,圆(或弓形)面上一个特定点所形成的圆,这个特定点就是圆(或弓形)的重心.可见,孝和已经有了“重心”这一概念.他这样计算圆环体、弧环体的体积的方法相当于帕波斯-古尔丁(Pappus-Guldin) 定理所叙述的方法.
所谓“十字环”是指两个圆柱体与一个圆环体互相截取组成的立体,如图2所示,两个圆柱的轴互相垂直且都通过圆环体的重心,圆柱被圆环体的表面所截,并且两圆柱的底半径与圆环体的截面半径相等.这一问题最早出现在榎并和澄的《参两录》()中,孝和首次用近似方法求出了十字环的体积.
另外,《毬阙变形草解》也是主要研究求积问题的着作.不过此书所涉及的多是阙球(用平面去截球体所得)、阙圆柱(用平面去截圆柱所得)、弧锥(底是弓形的锥体)和弧台(两底都是弓形的台体)等复杂的立体.他通过将这些立体变形而给出这些立体的近似求积方法.他把此书命名为《草解》,可见还有未尽之意,这说明上述一类立体的求积是当时最难的求积问题.
6.创立圆理、角术,解决了有关圆弧长、球体积及正多边形的一些问题
“圆理”一词在后来的和算家中常用来总称求解曲线长、图形(平面图形或曲面图形)的面积及立体的体积的方法.但孝和创立的圆理只限于圆、球的有关计算.他关于圆理的研究主要集中在《括要算法》第4卷(贞卷)中,由“求圆周率术”、“求弧矢弦率术”和“求立圆积率术”(立圆即球)三部分组成.他求圆的正 215,216,217边形的周长a,b,c,并对此施以增约术,用a,b,c的一种平均值
作为圆周长的近似值,由此求得圆周率的小数点后11位数字,接着又用
他的“求弧术”是由弦a,矢c,径d来求弧长s的方法,他给出公式:
其中A0, A1, A2, A3, A4, A5是由 c=c0,c1,c2,c3,c4,c5和相应的s=s0,s1,s2,s3,s4,s5来确定的.
如果上述插值公式中没有分母(d-c)i(i=1,2,…,5),则与牛顿插值公式完全一样.这个公式与牛顿插值公式的原理相同.牛顿插值公式是I.牛顿(Newton)发现的,W.琼斯(Jones)得到牛顿允许后着成《微分法》(Methos differentilis,1711)将其公布于世,而《括要算法》是1709年写成序、跋,1712年出版的,因此可以说关孝和与牛顿几乎同时各自独立地发现了这个公式.
对于球的体积,他提出了“求立圆积率术”,首先用平行平面把球截成50个薄片,将各薄片先看成以各自的接近球心一侧的底面为底的圆柱,求这50个“圆柱”的体积之和;再将各薄片看成是以各自的另一底面为底的圆柱,求出这50个“圆柱”的体积之和,再求出这两个体积和的平均值a作为这50个薄片的总体积.同样将球截成100个、200个薄片,分别如上求出这100个、200个薄片的总体积b和c,用增约术求出
将其作为球体积.虽然这一过程中用增约术的条件并不充足,但他如此分割—转换—求和的求积方法中,积分思想已开始萌芽.
“角术”是建立正多边形的边长与外接圆半径、边长与内切圆半径之间关系式的方法.他对正3—20边形分别给出了这种关系式,而以前的和算家只是求出了边数不大于15的正多边形的上述关系式.另外,孝和在推导过程中所用的几何学上的定理,有一些是仅凭直觉得到的.
7.研究了幻方问题,又用同余式解决了日本流传的古老的“继子立”即“立后嗣”的问题
《七部书》中的《方阵之法·圆攒之法》给出了幻方(他称为“方阵”)和圆攒的一般构造方法,即按一定规律变化n-2阶幻方的每一个数,将其相应地作为“内核”,再在外圈上按一定规则填上4n-4个数就可以得到n阶幻方.这种方法与16世纪德国数学家M.施蒂费尔(Stiefel)首次在其着作《整数算术》(Arithme-tica Integra,1544)中尝试证阴幻方的思想是一致的.
“继子立”是在日本广泛流传的一个古老问题,它说的是,某贵族家有30个孩子,其中15人是前妻所生,15人为后妻所生.要从这30个孩子中选出一个来继承家业,就让这30个孩子排成一圈,从某一个小孩开始往下数,让第10个孩子从圈中退出,再从下一个继续数,数到20时就让对应20的那个孩子从圈中出去.照此数下去,数到整十的数时就把对应该数的孩子从圈中拉出,直到最后剩下一个孩子,就由这个孩子来继承家业.如果现在只剩下一个前妻之子和14个后妻之子了,那么只要从这个前妻之子开始数,就可以使这个孩子成为“继子”.
孝和在《算脱验符之法》中将这个问题理论化并用同余式进行了推导证明.
除上述着作之外,孝和在数学方面还写下了《角法并演段图》、《阙疑抄一百问答术》、《勿惮改答术》等书.在天文历法方面他也有许多着作,如《授时历经立成》四卷、《授时历经立成立法》(1681)、《授时发明》、《四余算法》(1697)、《星曜算法》、《数学杂着》(又名《天文数学杂着》)等.
先前数学对关孝和的影响
从上面的介绍可以看出,关孝和的数学研究有的起源于在他之前的和算着作中的“遗题”.他最初的数学着作《发微算法》是对泽口一之的《古今算法记》(1671)中遗题的解答.他还解答了礒村吉德的《算法阙疑抄》(1659)的100道遗题和村濑义益的《算法勿惮记》(1673)的遗题,至今尚存有关的抄本.有些遗题成为关孝和研究的起点.例如《算法阙疑抄》第45个问题(“圆台斜截口”)引出了他对椭圆的研究;第 41个问题(“俱利加罗卷”,即在圆锥形棒上緾绳,求绳长)引出了他对畹背问题的研究.他的一些重要的思想方法也是从这些着作中得到的.例如,泽口一之在《古今算法记》中通过变换方程系数避开了有两个正根的情况,关孝和由此受启发变换“无商式”和“负商式”系数使其根达到要求,进而得到了求多项式函数的极大值、极小值的“适尽方级法”.他在《题术辨议之法》中,对“碎术”(即“自远至近数次而求所问”的方法,他认为“其术不定也”,因而不是最恰当的方法)问题采用逐次逼近法解决,这可能是从《算法勿惮改》中受到启发的,因为《算法勿惮改》在日本是首次使用逐次逼近法的着作.
但是,他的最主要的数学成就并不能在他之前的和算着作中找到线索,这就在他的研究与先前和算家的研究之间形成了一个“断层”.一些人认为,弥补这个断层的是中国数学和西方数学对他的影响.据日本武林史着作《武林隐见录》(1738)中“关新助算术秩事”一条记载,孝和估计到南部某寺收藏的“唐本”(指古时由中国传到日本的书籍)中可能有数学书,就去南都搜寻,并将其抄录下来带回江户研究.从此类“秩事”中可知关孝和在研究中参考了中国数学着作.
从孝和的数学成果来看,对他的研究产生较大影响的中国数学着作是《杨辉算法》(1378)和清朝的《天文大成管窥辑要》等.《杨辉算法》是杨辉的《乘除通变本末》(上卷为《算法通变本末》,中卷为《乘除通变算宝》,下卷为《法算取用本末》,与史仲荣合着)、《田亩比类乘除捷法》和《续古摘奇算法》三部着作合刻的,在朝鲜重刻后传入日本并保存下来.孝和从《杨辉算法》中得到了“翦管术”的名称和问题形式,并完善了“翦管术”.另外,《杨辉算法》中已有类似于“霍纳法”的解方程方法,大概是孝和从中受到启发,才提出了分别相当于霍纳法和牛顿逼近法的两种解方程方法.
朝黄鼎的《天文大成管窥辑要》对孝和也有影响.孝和的《授时发明》(或称《天文大成三条图解》)就是对此书第三卷的解释,由此看来孝和曾仔细研究过这部书.书中有对元朝郭守敬《授时历》中“三差法”所作的解说,可能由此引出了孝和对“招差法”的研究.
关于西方数学的影响是进入明治时代之后才开始研究的.17世纪中叶荷兰莱顿大学的F.范·斯霍腾(Schooten)教授有一个学生,名叫P.哈特辛乌斯(Hartsingius),是日本人.这由荷兰阿姆斯特丹大学的D.J.科尔泰韦赫(korteweg)教授给林鹤一博士的信中可知.这个日本人后来是否回到日本已无法证实.但据日本数学史家三上义夫考证,那个时期在日本有一名叫鸠野巴宗的医学家,此人或许就是哈特辛乌斯.如果这个推测正确,则说明当时已经有人将西方数学带回日本了,从而可以认为关孝和的数学研究直接受到西方数学的影响.
从以上的介绍可以看出,关孝和从以往数学家的研究中发现问题,又对这些问题从理论上加以解决或者将其推广为一般性方法.除此之外他还有自己的首创性研究.这些成果奠定了和算的基础,摆脱了日本数学家单纯介绍中国数学的传统束缚,成为后世和算家的典范.
关流数学教育及关流弟子
关孝和作为一个数学家的同时又是一位数学教育家.他一生中亲自授过课的弟子就有几百人,其中最杰出的是荒木村英及建部贤弘、建部贤明两兄弟,村英的弟子中有松永良弼,贤弘的弟子中有中根元圭,元圭弟子中有山路主住等最为着名.孝和与他的弟子们的研究构成了和算的一个最大流派——关流(关流各代数学家系谱如文后图所示).能培养出这许多杰出的弟子,与孝和创立的教育方式有很大关系.他根据学生的情况分成五个等级分别集中指导,每一级都规定有相应的具体数学内容和具体教材.初级的教以珠算,进而筹算,高级的从演段术到点窜术,随着每一级学生学业的完成而分别授以相应的“免许证”,相当于现在的毕业证,有“见题免许”、“隐题免许”、“伏题免许”、“别传免许”和“印可免许”五个等级.后来这种方式不断发展,成为关流严格的教育制度——五段免许制.只有得到五个等级的免许之后,才可以被称为“关流第几传”,而且最后得到“印可”的只限于几名高徒.后来随着数学研究的发展,加入到各等级的学习内容不断增加,五段免许制日益完善和严格.到了山路主住成为关流掌门人时,据说规定一代弟子中只传一子和高徒二人.
关于所用的教材,除了关孝和的着作之外,其他关流数学家也写过教科书,如山路主住的《关流算术》45卷作为关流入门者的最初教程;久留岛义太的《广益算梯》25卷也作为数学初学者的教材.
可见,关孝和创立的五段免许制体系,已有班级授课制的萌芽.
附:关流系谱
⑸ 函数0比0型计算方法有哪几种
硬算。
好吧我开玩笑的,下面开始正题。
①常见的就是洛必达法则,但这是建立在可导的条件下。
②所以在其他情况下请考虑用等价无穷小替换,这会化解一大部分。
③如果真的遇到极其棘手的,建议直接上泰勒公式。
④如果前面方法都不行的话,那还有一个方法,如果你是学高数的那可能不太合适,就是数值逼近的方法。换句话说你逐次取距离极限点10^-n远处的函数值作为极限值的数值逼近即可。至于误差分析详见数值分析任意版本的教材。
⑹ 近似算法和启发式算法的区别与联系
在计算机科学与运筹学,近似算法是指用来发现近似方法来解决优化问题的算法。近似算法通常与NP-hard问题相关; 由于不可能有效的多项式时间精确算来解决NP-hard问题,所以一个求解多项式时间次优解。与启发式算法不同,通常只能找到合理的解决方案相当快速,需要可证明的解决方案质量和可证明的运行时间范围。理想情况下,近似值最优可达到一个小的常数因子(例如在最优解的5%以内)。近似算法越来越多地用于已知精确多项式时间算法但由于输入大小而过于昂贵的问题。
启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
⑺ 近似算法的基本概念
所有已知的解决NP-难问题算法都有指数型运行时间。但是,如果我们要找一个“好”解而非最优解,有时候多项式算法是存在的。
给定一个最小化问题和一个近似算法,我们按照如下方法评价算法:首先给出最优解的一个下界,然后把算法的运行结果与这个下界
进行比较。对于最大化问题,先给出一个上界然后把算法的运行结果与这个上界比较。
近似算法比较经典的问题包括:最小顶点覆盖、旅行售货员问题、集合覆盖等。
迄今为止,所有的NP完全问题都还没有多项式时间算法。
对于这类问题,通常可采取以下几种解题策略。
(1)只对问题的特殊实例求解
(2)用动态规划法或分支限界法求解
(3)用概率算法求解
(4)只求近似解
(5)用启发式方法求解
若一个最优化问题的最优值为c*,求解该问题的一个近似算法求得的近似最优解相应的目标函数值为c,
则将该近似算法的性能比定义为max(c/c*, c*/c)。在通常情况下,该性能比是问题输入规模n的一个函数
ρ(n),即 max(c/c*, c*/c) <= ρ(n)。
该近似算法的相对误差定义为Abs[(c-c*)/c*]。若对问题的输入规模n,有一函数ε(n)使得Abs[(c-c*)/c*] <= ε(n),则称ε(n)为该近似算法的相对误差界。近似算法的性能比ρ(n)与相对误差界ε(n)之间显然有如下
关系:ε(n)≤ρ(n)-1。
⑻ 求过程数值逼近根号五!!!
根号五的平方是五,应该找整数的平方接近根号五,是在(2,3),然后再找2.5的平方大于5所以在(2,2.5)在(2,2.5)找2.25的值以次类推,找区间的中点值
⑼ 近似算法的子集和问题的近似算法
问题描述:设子集和问题的一个实例为〈S,t〉。其中,S={x1,x2,…,xn}是一个正整数的集合,t是一个正整数。子集和问题判定是否存在S的一个子集S1,使得∑x = t。(x属于S1)
1 子集和问题的指数时间算法
int exactSubsetSum (S,t)
{
int n=|S|;
L[0]={0};
for (int i=1;i<=n;i++) {
L[i]=mergeLists(L[i-1],L[i-1]+S[i]);
删去L[i]中超过t的元素;
}
return max(L[n]);
}
算法以集合S={x1,x2,…,xn}和目标值t作为输入。算法中用到将2个有序表L1和L2合并成为一个新的有序表的算法mergeLists(L1,L2)。
2 子集和问题的完全多项式时间近似格式
基于算法exactSubsetSum,通过对表L[i]作适当的修整建立一个子集和问题的完全多项式时间近似格式。
在对表L[i]进行修整时,用到一个修整参数δ,0<δ<1。用参数δ修整一个表L是指从L中删去尽可能多的元素,使得每一个从L中删去的元素y,都有一个修整后的表L1中的元素z满足(1-δ)y≤z≤y。可以将z看作是被删去元素y在修整后的新表L1中的代表。
举例:若δ=0.1,且L=〈10,11,12,15,20,21,22,23,24,29〉,则用δ对L进行修整后得到L1=〈10,12,15,20,23,29〉。其中被删去的数11由10来代表,21和22由20来代表,24由23来代表。
对有序表L修整算法
List trim(L,δ)
{ int m=|L|;
L1=〈L[1]〉;
int last=L[1];
for (int i=2;i<=m;i++) {
if (last<(1-δ)*L[i]) {
将L[i]加入表L1的尾部;
last=L[i];
}
return L1;
}
子集和问题近似格式
int approxSubsetSum(S,t,ε)
{ n=|S|;
L[0]=〈0〉;
for (int i=1;i<=n;i++) {
L[i]=Merge-Lists(L[i-1],
L[i-1]+S[i]);
L[i]=Trim(L[i],ε/n);
删去L[i]中超过t的元素;
}
return max(L[n]);
}
⑽ 逐步逼近式计算16进制加法
有位着名的数学家说过,“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家都有着深远的影响”。
对于数学史有着深厚研究的中国科学院数学与系统科学研究院研究员李文林认为,数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而,数学史是人类文明史最重要的组成部分。
近年来,李文林研究员执着地在中国数学史领域求索,曾发表过大量关于数学史的研究论文。他专门为大学学生撰写的《数学史教程》,被广泛地应用于大学数学史学科的教学。他是上一届中国数学会数学史分会的秘书长。
不久前,李文林研究员还参与了一项重要的研究工作。中国首届国家最高科学技术奖获得者、着名数学家吴文俊先生设立了“数学与天文丝路基金”,用于资助年轻学者研究古代中国与世界进行数学交流的历史,揭示部分东方数学成果如何从中国经“丝绸之路”传往欧洲之谜。该研究旨在纠正世界科技界对中国数学认识上存在的偏颇,通过对中国古代数学遗产的进一步发掘,探明近代科学的源流,鼓舞中国人在数学研究上的自信心和发愤图强的勇气。李文林作为该学术委员会组长参与了很多工作。
日前,本报记者采访了李文林研究员。李文林把中国数学史称为波澜壮阔的中华文明史中最亮丽的篇章。在李文林的娓娓叙述中,中国数学对于世界的卓越贡献,如盛开着的中国文明之花,一朵朵展现开来。
古代数学领跑世界
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。
中国数学的起源与早期发展,在古代着作《世本》中就已提到黄帝使“隶首作算数”,但这只是传说。在殷商甲骨文记录中,中国已经使用完整的十进制记数。至迟到春秋战国时代,又开始出现严格的十进位制筹算记数。筹算作为中国古代的计算工具,是中国古代数学对人类文明的特殊贡献。
关于几何学,《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”。“规”是圆规,“矩”是直角尺,“准绳”则是确定铅垂方向的器械。这些都说明了早期几何学的应用。从战国时代的着作《考工记》中也可以看到与手工业制作有关的实用几何知识。
战国(公元前475年~前221年)诸子百家与希腊雅典学派时代相当。“百家”就是多种不同的学派,其中的“墨家”与“名家”,其着作包含有理论数学的萌芽。如《墨经》(约公元前4世纪着作)中讨论了某些形式逻辑的法则,并在此基础上提出了一系列数学概念的抽象定义。
在现存的中国古代数学着作中,《周髀算经》是最早的一部。《周髀算经》成书年代据考应不晚于公元前2世纪西汉时期,但书中涉及的数学、天文知识,有的可以追溯到西周(公元前11世纪~前8世纪)。从数学上看,《周髀算经》主要的成就是分数运算、勾股定理及其在天文测量中的应用,其中关于勾股定理的论述最为突出。
《九章算术》是中国古典数学最重要的着作。这部着作的成书年代,根据考证,至迟在公元前1世纪,但其中的数学内容,有些也可以追溯到周代。《周礼》记载西周贵族子弟必学的六门课程“六艺”中有一门是“九数”。刘徽《九章算术注》“序”中就称《九章算术》是由“九数”发展而来,并经过西汉张苍、耿寿昌等人删补。
《九章算术》采用问题集的形式,全书246个问题,分成九章,依次为:方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。其中所包含的数学成就是丰富和多方面的。算术方面,“方田”章给出了完整的分数加、减、乘、除以及约分和通分运算法则,“粟米”、“衰分”、“均输”诸章集中讨论比例问题,“盈不足”术是以盈亏类问题为原型,通过两次假设来求繁难算术问题的解的方法。代数方面,《九章算术》的成就是具有世界意义的,“方程术”即线性联立方程组的解法;“正负术”是《九章算术》在代数方面的另一项突出贡献,即负数的引进;“开方术”即“少广”章的“开方术”和“开立方术”,给出了开平方和开立方的算法;在几何方面,“方田”、“商功”和“勾股”三章处理几何问题,其中“方田”章讨论面积计算,“商功”章讨论体积计算,“勾股”章则是关于勾股定理的应用。
《九章算术》的几何部分主要是实用几何。但稍后的魏晋南北朝,却出现了证明《九章算术》中那些算法的努力,从而引发了中国古典几何中最闪亮的篇章。
从公元220年东汉分裂,到公元581年隋朝建立,史称魏晋南北朝。这是中国历史上的动荡时期,但同时也是思想相对活跃的时期。在长期独尊儒学之后,学术界思辩之风再起。在数学上也兴起了论证的趋势,许多研究以注释《周髀算经》、《九章算术》的形式出现,实质是要寻求这两部着作中一些重要结论的数学证明。这方面的先锋,最杰出的代表是刘徽和祖冲之父子。他们的工作,使魏晋南北朝成为中国数学史上一个独特而丰产的时期。
《隋书》“律历志”中提到“魏陈留王景元四年刘徽注九章”,由此知道刘徽是公元3世纪魏晋时人,并于公元263年撰《九章算术注》。《九章算术注》包含了刘徽本人的许多创造,完全可以看成是独立的着作,奠定了这位数学家在中国数学史上的不朽地位。
刘徽数学成就中最突出的是“割圆术”和体积理论。刘徽在《九章算术》方田章“圆田术”注中,提出割圆术作为计算圆的周长、面积以及圆周率的基础,使刘徽成为中算史上第一位建立可靠的理论来推算圆周率的数学家。在体积理论方面,像阿基米德一样,刘徽倾力于面积与体积公式的推证,并取得了超越时代的成果。
刘徽的数学思想和方法,到南北朝时期被祖冲之和他的儿子推进和发展了。
祖冲之(公元429年—500年)活跃于南朝宋、齐两代,曾做过南徐州(今镇江)从事史和公府参军,都是地位不高的小官,但他却成为历代为数很少能名列正史的数学家之一。《南齐史》“祖冲之传”说他“探异今古”,“革新变旧”。
球体积的推导和圆周率的计算是祖冲之引以为荣的两大数学成就。祖冲之关于圆周率的贡献记载在《隋书》中。祖冲之算出了圆周率数值的上下限:3.1415926<π<3.1415927。祖冲之和他儿子关于球体积的推导被称之为“祖氏原理”。祖氏原理在西方文献中称“卡瓦列利原理”,1635年意大利数学家卡瓦列利(B.Cavalieri)独立提出,对微积分的建立有重要影响。
之后的大唐盛世是中国封建社会最繁荣的时代,可是在数学方面,整个唐代却没有产生出能够与其前的魏晋南北朝和其后的宋元时期相媲美的数学大家。
中国古典数学的下一个高潮宋元数学,是创造算法的英雄时代。
到了宋代,雕版印书的发达特别是活字印刷的发明,则给数学着作的保存与流传带来了福音。事实上,整个宋元时期(公元960年—1368年),重新统一了的中国封建社会发生了一系列有利于数学发展的变化。这一时期涌现的优秀数学家中最卓越的代表,如通常称“宋元四大家”的杨辉、秦九韶、李冶、朱世杰等,在世界数学史上占有光辉的地位;而这一时期印刷出版、记载着中国古典数学最高成就的宋元算书,也是世界文化的重要遗产。
贾宪是北宋人,约公元1050年完成一部叫《黄帝九章算术细草》着作,原书丢失,但其主要内容被南宋数学家杨辉着《详解九章算法》(1261年)摘录,因能传世。贾宪的增乘开方法,是一个非常有效和高度机械化的算法,可适用于开任意高次方。
秦九韶(约公元1202年—1261年)在他的代表着作《数书九章》中,将增乘开方法推广到了高次方程的一般情形,称为“正负开方术”。秦九韶还有“大衍总数术”,即一次同余式的一般解法。这两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。
秦九韶的大衍总数术,是《孙子算经》中“物不知数”题算法的推广。从“孙子问题”到“大衍总数术”关于一次同余式求解的研究,形成了中国古典数学中饶有特色的部分。这方面的研究,可能是受到了天文历法问题的推动。中国古典数学的发展与天文历法有特殊的联系,另一个突出的例子是内插法的发展。
古代天算家由于编制历法而需要确定日月五星等天体的视运动,当他们观察出天体运动的不均匀性时,内插法便应运产生。早在东汉时期,刘洪《乾象历》就使用了一次内插公式来计算月行度数。公元600年刘焊在《皇极历》中使用了二次内插公式来推算日月五星的经行度数。公元727年,僧一行又在他的《大衍历》中将刘焊的公式推广到自变量不等间距的情形。但由于天体运动的加速度也不均匀,二次内插仍不够精密。随着历法的进步,对数学工具也提出了更高的要求。到了宋元时代,便出现了高次内插法。
最先获得一般高次内插公式的数学家是朱世杰(公元1300年前后)。朱世杰的代表着作有《算学启蒙》(1299年)和《四元玉鉴》(1303年)。《算学启蒙》是一部通俗数学名着,曾流传海外,影响了日本与朝鲜数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最突出的数学创造有“招差术”(即高次内插法),“垛积术”(高阶等差级数求和)以及“四元术”(多元高次联立方程组与消元解法)等。
宋元数学发展中一个最深刻的动向是代数符号化的尝试,这就是“天元术”和“四元术”的发明。天元术和四元术都是用专门的记号来表示未知数,从而列方程、解方程的方法,它们是代数学的重要进步。
中国古代数学以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。
现代数学迎头赶上
自鸦片战争以后,西方列强的军舰与大炮使中国朝野看到了科学与教育的重要,部分有识之士还逐步认识到数学对于富国强兵的意义,从而竭力主张改革国内数学教育,同时派遣留学生出国学习西方数学。辛亥革命以后,这两条途径得到了较好的结合,有力地推动了中国现代高等数学教育的建制。
20世纪初,在科学与民主的高涨声中,中国数学家们踏上了学习并赶超西方先进数学的光荣而艰难的历程。1912年,中国第一个大学数学系——北京大学数学系成立(当时叫“数学门”,1918年改“门”称“系”),这是中国现代高等数学教育的开端。
20世纪20年代,是中国现代数学发展道路上的关键时期。在这一时期,全国各地大学纷纷创办数学系,数学人才培养开始着眼于国内。除了北京大学、清华大学、南开大学、浙江大学,在这一时期成立数学系的还有东南大学(1921年)、北京师范大学(1922年)、武汉大学(1922年)、厦门大学(1923年)、四川大学(1924年)等等。
伴随着中国现代数学教育的形成,现代数学研究也在中国悄然兴起。中国现代数学的开拓者们,在发展现代数学教育的同时,努力拼搏,追赶世界数学前沿,至1920年末和1930年,已开始出现一批符合国际水平的研究工作。
1928年,陈建功在日本《帝国科学院院报》上发表论文《关于具有绝对收敛Fourier级数的函数类》,中心结果是证明了一条关于三角级数在区间上绝对收敛的充要条件。几乎同时,G.哈代和J.李特尔伍德在德文杂志《数学时报》上也发表了同样的结果,因而西方文献中常称此结果为“陈-哈代-李特尔伍德定理”。这标志中国数学家已能生产国际一流水平的研究成果。
差不多同时,苏步青、江泽涵、熊庆来、曾炯之等也在各自领域里作出令国际同行瞩目的成果。1928—1930年间,苏步青在当时处于国际热门的仿射微分几何方面引进并决定了仿射铸曲面和旋转曲面。他在这个领域的另一个美妙发现后被命名为“苏锥面”。江泽涵是将拓扑学引进中国的第一人,他本人在拓扑学领域中最有影响的工作是关于不动点理论的研究,这在他1930年的研究中已有端倪。江泽涵从1934年起出任北京大学数学系主任。熊庆来“大器晚成”,1931年,已经身居清华大学算学系主任的熊庆来,再度赴法国庞加莱研究所,两年后取得法国国家博士学位。其博士论文《关于无穷级整函数与亚纯函数》、引进后以他的名字命名的“熊氏无穷级”等,将博雷尔有穷级整函数论推广为无穷级情形。
从20世纪初第一批学习现代数学的中国留学生跨出国门,到1930年中国数学家的名字在现代数学热门领域的前沿屡屡出现,前后不过30余年,这反映了中国现代数学的先驱者们高度的民族自强精神和卓越的科学创造能力。
这一点,在1930年至1940年中的时期里有更强烈的体现。这一时期的大部分时间,中国是处在抗日战争的烽火之中,时局动荡,生活艰苦。当时一些主要的大学都迁移到了敌后内地。在极端动荡、艰苦的战时环境下,师生们却表现出抵御外侮、发展民族科学的高昂热情。他们在空袭炸弹的威胁下,照常上课,并举行各种讨论班,同时坚持深入的科学研究。这一时期产生了一系列先进的数学成果,其中最有代表性的是华罗庚、陈省身、许宝的工作。
到40年代后期,又有一批优秀的青年数学家成长起来,走向国际数学的前沿并作出先进的成果,其中最有代表性的是吴文俊的工作。吴文俊1940年毕业于上海交通大学,1947年赴法国留学。吴文俊在留学期间就提出了后来以他的名字命名的“吴示性类”和“吴公式”,有力地推动了示性类理论与代数拓扑学的发展。
经过老一辈数学家们披荆斩棘的努力,中国现代数学从无到有地发展起来,从1930年开始,不仅有了达到一定水平的队伍,而且有了全国性的学术性组织和发表成果的杂志,现代数学研究初具规模,并呈现上升之势。
1949年中华人民共和国成立之后,中国现代数学的发展进入了一个新的阶段。新中国的数学事业经历了曲折的道路而获得了巨大的进步。这种进步主要表现在:建立并完善了独立自主的现代数学科研与教育体制;形成了一支研究门类齐全、并拥有一批学术带头人的实力雄厚的数学研究队伍;取得了丰富的和先进的学术成果,其中达到国际先进水平的成果比例不断提高。改革开放以来,中国数学更是进入了前所未有的良好的发展时期,特别是涌现了一批优秀的、活跃于国际数学前沿的青年数学家。
改革开放以来的20多年是我国数学事业空前发展的繁荣时期。中国数学的研究队伍迅速扩大,研究论文和专着成十倍地增长,研究领域和方向发生了深刻的变化。我国数学家不仅在传统的领域内继续作出了成绩,而且在许多重要的过去空缺的方向以及当今世界研究前沿都有重要的贡献。在世界各地许多大学的数学系里都有中国人任教,特别是在美国,中国数学家还在大多数名校占有重要教职。在许多高水平的国际学术会议上都能见到作特邀报告的中国学者。在重要的数学期刊上,不仅中国人的论着屡见不鲜,而且在引文中,中国人的名字亦频频出现。在一些有影响的国际奖项中,中国人也开始崭露头角。
这一切表明,我国的数学研究水平比过去有了很大提高,与世界先进水平的差距明显地缩小了,在许多重要分支上都涌现出了一批优秀的成果和学术带头人。中国人在国际数学界的地位空前提高了。
李文林研究员表示,中国数学的今天,是几代数学家共同拼搏奋斗的结果。2002年国际数学家大会在北京召开,标志着中国国际地位的提高与数学水平的发展。他表示相信,在众多中国科学家的共同努力下,中国数学赶超世界先进水平,并在21世纪成为世界数学大国的梦想一定能够实现。
近代数学日渐势微
《四元玉鉴》可以说是宋元数学的绝唱。元末以后,中国传统数学骤转衰落。整个明清两代(1368年—1911年),不仅未再产生出能与《数书九章》、《四元玉鉴》相媲美的数学杰作,而且在清中叶乾嘉学派重新发掘研究以前,“天元术”、“四元术”这样一些宋元数学的精粹,竟长期失传,无人通晓。明初开始长达三百余年的时期内,除了珠算的发展及与之相关的着作(如程大位《算法统宗》,1592年)的出现,中国传统数学研究不仅没有新的创造,反而倒退了。
中国传统数学自元末以后落后的原因是多方面的。皇朝更迭的漫长的封建社会,在晚期表现出日趋严重的停滞性与腐朽性,数学发展缺乏社会动力和思想刺激。元代以后,科举考试制度中的《明算科》完全废除,唯以八股取士,数学社会地位低下,研究数学者没有出路,自由探讨受到束缚甚至遭禁锢。
同时,中国传统数学本身也存在着弱点。筹算系统使用的十进位值记数制是对世界文明的一大贡献,但筹算本身却有很大的局限性。在筹算框架内发展起来的半符号代数“天元术”与“四元术”,就不能突破筹算的限制演进为彻底的符号代数。筹式方程运算不仅笨拙累赘,而且对有五个以上未知量的方程组无能为力。另一方面,算法创造是数学进步的必要因素,但缺乏演绎论证的算法倾向与缺乏算法创造的演绎倾向同样难以升华为现代数学。而无论是筹算数学还是演绎几何,在中国的传播都由于“天朝帝国”的妄大、自守而显得困难和缓慢。16、17世纪,当近代数学在欧洲蓬勃兴起以后,中国数学就更明显地落后了。
从17世纪初到19世纪末大约三百年时间,是中国传统数学滞缓发展和西方数学逐渐传入的过渡时期,这期间出现了两次西方数学传播的高潮。
第一次是从17世纪初到18世纪初,标志性事件是欧几里得《原本》的首次翻译。1606年,中国学者徐光启(1562年—1633年)与意大利传教士利玛窦(Matteo Ricci)合作完成了欧几里得《原本》前6卷的中文翻译,并于翌年(1607年)正式刊刻出版,定名《几何原本》,中文数学名词“几何”由此而来。
西方数学在中国早期传播的第二次高潮是从19世纪中叶开始。除了初等数学,这一时期还传入了包括解析几何、微积分、无穷级数论、概率论等近代数学知识。
西方数学在中国的早期传播对中国现代数学的形成起了一定的作用,但由于当时整个社会环境与科学基础的限制,总的来说其功效并不显着。清末数学教育的改革仍以初等数学为主,即使在所谓“大学堂”中,数学教学的内容也没有超出初等微积分的范围,并且多半被转化为传统的语言来讲授。中国现代数学的真正开拓,是在辛亥革命以后,兴办高等数学教育是重要标志。