当前位置:首页 » 云服务器 » 如何修改服务器内核

如何修改服务器内核

发布时间: 2025-02-19 12:47:02

㈠ centos 6.6怎么升级内核

1. 准备工作
确认内核及版本信息
[root@hostname ~]# uname -r
2.6.32-220.el6.x86_64
[root@hostname ~]# cat /etc/centos-release
CentOS release 6.5 (Final)
安装软件
编译安装新内核,依赖于开发环境和开发库
# yum grouplist //查看已经安装的和未安装的软件包组,来判断我们是否安装了相应的开发环境和开发库;
# yum groupinstall "Development Tools" //一般是安装这两个软件包组,这样做会确定你拥有编译时所需的一切工具
# yum install ncurses-devel //你必须这样才能让 make *config 这个指令正确地执行
# yum install qt-devel //如果你没有 X 环境,这一条可以不用
# yum install hmaccalc zlib-devel binutils-devel elfutils-libelf-devel //创建 CentOS-6 内核时需要它们
如果当初安装系统是选择了Software workstation,上面的安装包几乎都已包含。
2. 编译内核
获取并解压内核源码,配置编译项

linux内核版本有两种:稳定版和开发版 ,Linux内核版本号由3个数字组成:r.x.y
r: 主版本号
x: 次版本号,偶数表示稳定版本;奇数表示开发中版本。
y: 修订版本号 , 表示修改的次数
去 http://www.kernel.org 首页,可以看到有stable, longterm等版本,longterm是比stable更稳定的版本,会长时间更新,因此我选择 3.10.58。

[root@sean ~]#wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.28.tar.xz

[root@sean ~]# tar -xf linux-3.10.58.tar.xz -C /usr/src/
[root@sean ~]# cd /usr/src/linux-3.10.58/
[root@sean linux-3.10.58]# cp /boot/config-2.6.32-220.el6.x86_64 .config
我们在系统原有的内核配置文件的基础上建立新的编译选项,所以复制一份到当前目录下,命名为.config。接下来继续配置:
[root@sean linux-3.10.58]# sh -c 'yes "" | make oldconfig'
HOSTCC scripts/basic/fixdep
HOSTCC scripts/kconfig/conf.o
SHIPPED scripts/kconfig/zconf.tab.c
SHIPPED scripts/kconfig/zconf.lex.c
SHIPPED scripts/kconfig/zconf.hash.c
HOSTCC scripts/kconfig/zconf.tab.o
HOSTLD scripts/kconfig/conf
scripts/kconfig/conf --oldconfig Kconfig
.config:555:warning: symbol value 'm' invalid for PCCARD_NONSTATIC
.config:2567:warning: symbol value 'm' invalid for MFD_WM8400
.config:2568:warning: symbol value 'm' invalid for MFD_WM831X
.config:2569:warning: symbol value 'm' invalid for MFD_WM8350
.config:2582:warning: symbol value 'm' invalid for MFD_WM8350_I2C
.config:2584:warning: symbol value 'm' invalid for AB3100_CORE
.config:3502:warning: symbol value 'm' invalid for MMC_RICOH_MMC
*
* Restart config...
*
*
* General setup
*
... ...
XZ decompressor tester (XZ_DEC_TEST) [N/m/y/?] (NEW)
Averaging functions (AVERAGE) [Y/?] (NEW) y
CORDIC algorithm (CORDIC) [N/m/y/?] (NEW)
JEDEC DDR data (DDR) [N/y/?] (NEW)
#
# configuration written to .config
make oldconfig会读取当前目录下的.config文件,在.config文件里没有找到的选项则提示用户填写,然后备份.config文件为.config.old,并生成新的.config文件,参考http://stackoverflow.com/questions/4178526/what-does-make-oldconfig-do-exactly-linux-kernel-makefile
有的文档里介绍使用make memuconfig,它便是根据需要定制模块,类似界面如下:(在此不需要)

开始编译
[root@sean linux-3.10.58]# make -j4 bzImage //生成内核文件
[root@sean linux-3.10.58]# make -j4 moles //编译模块
[root@sean linux-3.10.58]# make -j4 moles_install //编译安装模块
-j后面的数字是线程数,用于加快编译速度,一般的经验是,逻辑CPU,就填写那个数字,例如有8核,则为-j8。(moles部分耗时30多分钟)
安装
[root@sean linux-3.10.58]# make install
实际运行到这一步时,出现ERROR: modinfo: could not find mole vmware_balloon,但是不影响内核安装,是由于vsphere需要的模块没有编译,要避免这个问题,需要在make之前时修改.config文件,加入
HYPERVISOR_GUEST=yCONFIG_VMWARE_BALLOON=m
(这一部分比较容易出问题,参考下文异常部分)
修改grub引导,重启
安装完成后,需要修改Grub引导顺序,让新安装的内核作为默认内核。
编辑 grub.conf文件,
vi /etc/grub.conf
#boot=/dev/sda
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title CentOS (3.10.58)
root (hd0,0)
...
数一下刚刚新安装的内核在哪个位置,从0开始,然后设置default为那个数字,一般新安装的内核在第一个位置,所以设置default=0。
重启reboot:
boot-with-new-kernel
确认当内核版本
[root@sean ~]# uname -r
3.10.58
升级内核成功!
3. 异常
编译失败(如缺少依赖包)
可以先清除,再重新编译:
# make mrproper #完成或者安装过程出错,可以清理上次编译的现场
# make clean
在vmware虚拟机上编译,出现类似下面的错误
[root@sean linux-3.10.58]# make install
sh /usr/src/linux-3.10.58/arch/x86/boot/install.sh 3.10.58 arch/x86/boot/bzImage \
System.map "/boot"
ERROR: modinfo: could not find mole vmware_balloon
可以忽略,如果你有强迫症的话,尝试以下办法:
要在vmware上需要安装VMWARE_BALLOON,可直接修改.config文件,但如果vi直接加入CONFIG_VMWARE_BALLOON=m依然是没有效果的,因为它依赖于HYPERVISOR_GUEST=y。如果你不知道这层依赖关系,通过make menuconfig后,Device Drivers -> MISC devices 下是找不到VMware Balloon Driver的。(手动vi .config修改HYPERVISOR_GUEST后,便可以找到这一项),另外,无论是通过make menuconfig或直接vi .config,最后都要运行sh -c 'yes "" | make oldconfig'一次得到最终的编译配置选项。
然后,考虑到vmware_balloon可能在这个版本里已更名为vmw_balloon,通过下面的方法保险起见:
# cd /lib/moles/3.10.58/kernel/drivers/misc/
# ln -s vmw_balloon.ko vmware_balloon.ko #建立软连接
其实,针对安装docker的内核编译环境,最明智的选择是使用sciurus帮我们配置好的.config文件。
也建议在make bzImage之前,运行脚本check-config.sh检查当前内核运行docker所缺失的模块。
当提示缺少其他mole时如NF_NAT_IPV4时,也可以通过上面的方法解决,然后重新编译。

4. 几个重要的Linux内核文件介绍

在网络中,不少服务器采用的是Linux系统。为了进一步提高服务器的性能,可能需要根据特定的硬件及需求重新编译Linux内核。编译Linux内核,需要根据规定的步骤进行,编译内核过程中涉及到几个重要的文件。比如对于RedHat Linux,在/boot目录下有一些与Linux内核有关的文件,进入/boot执行:ls –l。编译过RedHat Linux内核的人对其中的System.map 、vmlinuz、initrd-2.4.7-10.img印象可能比较深刻,因为编译内核过程中涉及到这些文件的建立等操作。那么这几个文件是怎么产生的?又有什么作用呢?
(1)vmlinuz
vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接。
vmlinuz的建立有两种方式。
一是编译内核时通过“make zImage”创建,然后通过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/zImage /boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。
二是内核编译时通过命令make bzImage创建,然后通过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/bzImage /boot/vmlinuz”产生。
bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。
zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip 或 gzip –dc解包vmlinuz。
内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。
vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
(2) initrd-x.x.x.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/moles下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,下面来看一看这个文件的内容。
initrd实现加载一些模块和安装文件系统等。
initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
下面的命令创建initrd映象文件:
(3) System.map
System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。
内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样:
nm /boot/vmlinux-2.4.7-10 > System.map
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o
)|([aUw])|(..ng
)|(LASH[RL]DI)' | sort > System.map

然后复制到/boot:
cp /usr/src/linux/System.map /boot/System.map-2.4.7-10
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。
然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。Linux 符号表使用到2个文件:/proc/ksyms和System.map。
/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。
另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。
Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。

㈡ 如何优化服务器配置以提升性能关键参数设置和优化技巧助您提升服务器性能

服务器扮演着企业运行的重要角色、在当今数字化时代。优化服务器配置对于确保的数据处理和提供卓越的用户体验至关重要。帮助您提升服务器性能、提供稳定可靠的服务,本文将介绍一些关键参数设置和优化技巧。

1.操作系统的选择与优化:

Linux等,如WindowsServer、选择合适的操作系统对于服务器性能至关重要。并进行适当的优化、如关闭无用服务,启用性能监控等,应根据业务需求和硬件配置选择

2.内存管理及分配策略:

合理分配内存资源可以显着提升服务器性能。调整页面文件大小,定期清理内存碎片等,包括合理设置缓存大小、优化内存管理策略。

3.CPU调度策略设置:

可以充分利用服务器的处理能力,通过设置合理的CPU调度策略。如时间片轮转、可根据应用程序需求和服务器硬件特性,多队列等,灵活调整调度策略。

4.硬盘I/O优化:

硬盘I/O是服务器性能的瓶颈之一。使用RAID阵列,合理配置读写缓存等方式提升硬盘I/O性能,加快数据访问速度、可以通过优化文件系统。

5.网络参数调优:

提升服务器的响应速度,可以减少网络延迟和丢包率,通过调整网络参数。调整缓冲区大小等方式都可以改善网络性能,优化网络拓扑,增加带宽。

6.服务进程管理及优化:

提升系统响应速度、合理管理和优化服务器上的服务进程可以减少资源占用。限制后台进程数量等方式实现,可以通过调整服务启动顺序。

7.安全设置与防火墙配置:

保障服务器安全是优化配置的重要一环。禁用不必要的服务端口等措施可以提升服务器的安全性、设置强密码,定期更新防火墙规则。

8.日志管理与定期清理:

影响服务器性能,日志文件过多会占据磁盘空间。提升服务器性能、配置合理的日志轮转策略有助于释放磁盘空间,定期清理无用日志文件。

9.定时任务优化:

提高系统的稳定性和可靠性,合理配置定时任务可以减少对服务器资源的占用。合并相似任务等、应删除无用的定时任务。

10.数据库优化技巧:

其性能直接影响到整个系统、数据库是服务器关键组件。查询语句优化,通过索引优化,适当分表分库等手段,可以提升数据库查询速度和并发处理能力。

11.负载均衡与高可用性配置:

提高系统的可伸缩性和可靠性,通过负载均衡技术将请求均匀分配给多台服务器。应根据业务需求选择合适的负载均衡策略和配置方式

12.虚拟化技术应用:

提高硬件利用率,利用虚拟化技术可以最大限度地利用服务器资源。充分利用虚拟机快照、迁移等功能,合理配置虚拟机资源,提升服务器性能和可管理性。

13.监控与性能调优:

可以及时发现问题并进行调优,通过实时监控服务器性能指标和日志记录。识别瓶颈并针对性地进行优化,提升服务器整体性能,借助监控工具。

14.故障排除与灾备策略:

对于服务器稳定运行至关重要、建立完善的故障排除和灾备策略。提高系统可用性和容错性,备份数据,应定期检查硬件设备、建立灾备机制等。

15.持续优化与升级:

跟进技术发展,服务器配置优化不是一次性的任务,及时升级硬件和软件,应定期评估和优化配置,以保持服务器的高性能和可靠性。

增强系统稳定性和安全性,通过合理配置服务器参数和优化技巧,可以提升服务器性能。并持续进行优化和升级、硬件特性和软件环境灵活选择、应根据业务需求,在配置服务器时,以确保服务器始终处于最佳状态。

如何优化服务器配置以提升性能和安全性

其配置的优化对于提升性能和保障安全至关重要、在当今数字化时代,服务器作为支撑企业运营的重要基础设施。为读者详细介绍如何优化服务器配置、以提升服务器的性能和安全性,本文将从关键参数入手。

段落

1.操作系统选择和优化:例如关闭不必要的服务、以提高性能和安全性,选择最适合业务需求的操作系统,调整内核参数等,并进行相应的优化。

2.硬件选型与扩展:硬盘等、以满足未来的业务增长和流量压力,例如处理器,根据业务需求选择合适的硬件配置,内存,并合理规划扩展性。

3.网络配置优化:以确保服务器与外部网络的通信,传输速度,数据包大小等、配置合适的网络参数、并防止潜在的安全风险,包括网络带宽。

4.数据库参数调优:以提高数据库性能和稳定性,查询优化等、根据数据库类型和应用需求、调整数据库的参数配置,连接数,例如缓存大小。

5.安全配置加固:访问控制等、如防火墙设置,强密码策略,以保障服务器和数据的安全,采取必要的安全措施。

6.监控与性能调优:以提高服务器的稳定性和响应速度,及时检测和解决服务器的性能瓶颈和故障,建立有效的监控系统、并进行系统调优。

7.服务端软件优化:缓存服务器,进行相应的优化配置,以提升整体性能和用户体验,应用服务器等,例如Web服务器,针对所使用的服务端软件。

8.负载均衡与高可用性配置:以提高系统的可用性和可靠性,分发请求和提供冗余备份,通过负载均衡技术和高可用集群配置。

9.定期备份与灾备方案:并确保在灾难发生时能够快速恢复、并建立灾备方案,制定合理的数据备份策略,以防止数据丢失和业务中断。

10.虚拟化和容器化技术:提高资源利用率、简化部署和管理过程,并提供灵活的扩展性,采用虚拟化技术或容器化技术。

11.系统更新和漏洞修复:并修复已知漏洞,及时进行操作系统和软件的更新、以保持服务器的安全性和稳定性。

12.性能测试与优化:并进行相应的优化和调整,定期进行服务器性能测试,以保持服务器的最佳状态,找出潜在问题和瓶颈。

13.日志管理与分析:及时检测和解决潜在问题、建立完善的日志管理和分析机制,记录服务器的运行情况和异常事件。

14.节能与环保配置:例如开启硬件电源管理,以降低能耗和对环境的影响,合理配置服务器的节能策略,采用低功耗硬件等。

15.灵活的云计算方案:根据业务需求灵活调整配置、提高弹性和灵活性、并降低总体成本,考虑将服务器部署到云计算平台上。

实现运行和可靠保障,可以提升服务器的性能和安全性,通过对服务器配置参数的优化。优化调整、在不同业务需求和场景下,将帮助企业获得更好的服务器性能和用户体验,合理选型、提升竞争力。

㈢ centos7 离线升级/在线升级操作系统内核

CentOS作为一款Linux发行版,它基于开放源代码,受到许多服务器使用青睐。在某些情况下,系统内核版本的限制可能会成为问题,如某些软件运行需求更高的内核版本。本文将详细介绍如何实现CentOS7的离线升级和在线升级系统内核。

一、系统环境与内核下载网址

为了确保升级过程顺利,首先需要确保你的CentOS系统环境完整。内核的下载可通过两个主要渠道:阿里云开源软件镜像站(mirrors.aliyun.com/elre...)和elrepo镜像站(elrepo.org/linux/kernel...)。

二、离线升级系统内核

离线升级需要进行一系列步骤,确保过程的安全性和稳定性。首先,查看当前系统版本和内核版本,确保信息准确。接着,通过命令更新yum源仓库。启用ELRepo仓库,为内核升级提供必要的支持。导入ELRepo仓库的公共密钥并安装其yum源。下载指定版本的内核包,此步骤需要先确保导入公共密钥和安装yum源,否则无法下载。安装内核包后,需通过修改GRUB_DEFAULT为0来设置默认启动内核,并生成新的grub配置文件以完成升级。

三、在线升级系统内核

在线升级更为便捷,首先同样启用ELRepo仓库并安装yum源。查看可用的内核版本,根据需求选择最新或长期支持版本进行安装。安装新内核后,同样需要调整GRUB_DEFAULT为0,并生成新的grub配置文件。重启系统后,通过查看当前内核版本确认升级成功。

本文旨在提供一个完整的升级流程,以确保CentOS7系统的内核可以满足所需应用的需求。通过离线或在线升级系统内核,用户可根据实际需求选择最合适的升级方式,确保系统稳定运行。

(来源:cnblogs.com/renshengdez...)

热点内容
libx264编译 发布:2025-04-23 00:13:37 浏览:219
access的web数据库 发布:2025-04-23 00:08:29 浏览:42
安卓上面的谷歌搜索框怎么去除 发布:2025-04-23 00:07:27 浏览:171
c判断文件夹是否存在 发布:2025-04-22 23:56:36 浏览:941
精确测算法 发布:2025-04-22 23:54:09 浏览:287
安卓如何更换开机画面 发布:2025-04-22 23:49:10 浏览:889
知道ID密码怎么定位 发布:2025-04-22 23:34:16 浏览:253
c语言采样 发布:2025-04-22 23:30:03 浏览:916
数据库服务器修改了ip地址 发布:2025-04-22 23:25:36 浏览:7
c语言基础案例 发布:2025-04-22 23:23:28 浏览:693