授时服务器如何保证精度
❶ gps 可以用来对时,并且比较准时,精度多少原理是什么
GPS授时是利用GPS卫星搭载的高精度原子钟,产生基准信号和时间标准,提供覆盖全球的时间服务,其授时精度高达20亿分之一秒。
GPS授时系统主要是利用GPS精确对时的特点来实现装置的统一对时。GPS接收器在任意时刻能同时接收其视野范围内4~8颗卫星信号,经解码和处理后从中提取并输出两种时间信号:
(1)时间间隔为1s的脉冲信号PPS,其脉冲前沿与国际标准时间(格林威治时间)的同步误差不超过1μs;
(2)经串行口输出的与PPS脉冲前沿对应的国际标准时间和日期代码。
GPS授时对时方式
主要有3种对时方式:硬对时(脉冲对时)、软对时(即由通讯报文来对时)和编码对时(应用广泛的IRIG-B对时)。
1、硬对时一般用分对时或秒对时,分对时将秒清零、秒对时将毫秒清零。理论上讲,秒对时精度要高于分对时。硬对时按接线方式可分成差分对时与空接点对时两种。硬对时仅能实现站内装置对时。
2、软对时采用通讯报文的方式,传输的是包括年、月、日、时、分、秒、毫秒在内的完整时间。此种对时方式受距离限制较大,且存在固有传播延时误差,所以在精度要求高的场合不能满足要求。
3、编码对时目前常用的是IRIG-B对时,分调制和非调制两种。IRIG-B码实际上也可以看作是一种综合对时方案,因为在其报文中包含了秒、分、小时、日期等时间信息,同时每一帧报文的第一个跳变又对应于整秒,相当于秒脉冲同步信号。
(1)授时服务器如何保证精度扩展阅读:
GPS特点:
(1)全球全天候定位
GPS卫星的数目较多,且分布均匀,保证了地球上任何地方任何时间至少可以同时观测到4颗GPS卫星,确保实现全球全天候连续的导航定位服务(除打雷闪电不宜观测外)。
(2)定位精度高
应用实践已经证明,GPS相对定位精度在50km以内可达10-6m,100-500km可达10-7m,1000km可达10-9m。
在300-1500m工程精密定位中,1小时以上观测时解其平面位置误差小于1mm,与ME-5000电磁波测距仪测定的边长比较,其边长较差最大为0.5mm,校差中误差为0.3mm。
实时单点定位(用于导航):P码1~2m ;C/A码5~10m。
静态相对定位:50km之内误差为几mm+(1~2ppm*D);50km以上可达0.1~0.01ppm。
实时伪距差分(RTD):精度达分米级。
实时相位差分(RTK):精度达1~2cm。
(3)观测时间短
随着GPS系统的不断完善,软件的不断更新,20km以内相对静态定位,仅需15-20分钟;快速静态相对定位测量时,当每个流动站与基准站相距在15KM以内时,流动站观测时间只需1-2分钟;采取实时动态定位模式时,每站观测仅需几秒钟。因而使用GPS技术建立控制网,可以大大提高作业效率。
❷ 为了实现更高的时间测量精度,国家授时中心使用哪种产生和保持标准时间
为了实现更高的时间测量精度,国家授时中心使用长短波授时系统产生和保持标准时间。短波授时台建成后,满足了毫秒量级用户的需求。
但是,随着我国空间技术飞速发展和战略武器试验的需要,需要更高精度的授时手段。长波授时台应运而生,它的精度是微秒量级,比短波台授时精度提高了1000倍。该项成果1988年获国家科技进步奖一等奖。此后,长短波授时系统又经多次改造升级,始终保持着国际先进水平。
(2)授时服务器如何保证精度扩展阅读:
国家授时中心总部位于陕西省西安市临潼区,在西安航天产业基地、渭南蒲城设有分部,另有授时发播台、授时监测站、测定轨站分布在全国。主要开展量子频标、时间保持、守时理论与方法、高精度时间传递与精密测定轨、时间频率测量与控制、时间用户系统与终端、导航与通信等研究工作。
国家授时中心拥有国内第一、世界第四规模的守时原子钟组,负责确定和保持的我国的原子时标准和协调世界时标准,并代表我国参加国际原子时合作,产生和保持的国家标准时间与国际协调世界时UTC的偏差数值保持在10ns以内,时间频率保持的稳定性以及对国际原子时计算的权重贡献均位列全球前四位。
❸ 北斗卫星时钟服务器是怎样保证其自身可靠性的
北斗卫星时钟服务器组合选用高精度GPS 接收机/北斗二代接收机/外部B码基准/NTP输入,提供高可靠性、高冗余度的时间基准信号,并采用先进的时间频率测控技术驯服晶振,使守时电路输出的时间同步信号精密同步在GPS/北斗/外部B码/NTP输入时间基准上,输出短期和长期稳定度都十分优良的高精度同步信号。
北斗卫星时钟服务器采用精准的测频与智能驯服算法,使振荡器时间频率信号与GPS卫星/北斗卫星/外部B码时间基准保持精密同步。由于装置输出的1PPS等时间信号是内置振荡器的分频秒信号输出,同步于GPS/北斗信号但并不受GPS/北斗秒脉冲信号跳变带来的影响,相当于UTC时间基准的复现。采用了“智能学习算法”的GPS北斗时钟,在驯服晶振过程中能够不断“学习”晶振的运行特性,并将这些参数存入板载存储器中。当外部时间基准出现异常或不可用时,装置能够自动切换到内部守时状态,并依据板载存储器中的参数对晶体振荡器特性进行补偿,使守时电路继续提供高可靠性的时间信息输出,同时避免了因晶体振荡器老化造成的频偏对守时指标的影响。
❹ NTP网络授时服务器的稳定度是怎么保证的呢
网络时间协议NTP(Network Time Protocol)是用于互联网中时间同步的标准互联网协议。NTP的用途是把计算机的时间同步到某些时间标准。目前采用的时间标准是世界协调时UTC(Universal Time Coordinated)。
NTP时间服务器是针对自动化系统中的计算机、控制装置等进行校时的高科技产品,NTP时间服务器产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口类型来传输给自动化系统中需要时间信息的设备(计算机、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU),这样就可以达到整个系统的时间同步。
网络时间协议NTP(Network Time Protocol)是用于互联网中时间同步的标准互联网协议。NTP的用途是把计算机的时间同步到某些时间标准。目前采用的时间标准是世界协调时UTC(Universal Time Coordinated)。NTP的主要开发者是美国特拉华大学的David L. Mills教授。
NTP时间服务器采用SMT表面贴装技术生产,大规模集成电路设计,以高速芯片进行控制,具有精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单等特点,全自动智能化运行,免操作维护,适合无人值守且广泛应用于电力、金融、通信、交通、广电、石化、冶金、国防、教育、IT、公共服务设施等各个领域。
NTP的设计充分考虑了互联网上时间同步的复杂性。NTP提供的机制严格、实用、有效,适应于在各种规模、速度和连接通路情况的互联网环境下工作。NTP以GPS时间代码传送的时间消息为参考标准,采用了Client/Server结构,具有相当高的灵活性,可以适应各种互联网环境。NTP不仅校正现行时间,而且持续跟踪时间的变化,能够自动进行调节,即使网络发生故障,也能维持时间的稳定。NTP产生的网络开销甚少,并具有保证网络安全的应对措施。这些措施的采用使NTP可以在互联网上获取可靠和精确的时间同步,并使NTP成为互联网上公认的时间同步工具。
目前,在通常的环境下,NTP提供的时间精确度在WAN上为数十毫秒,在LAN上则为亚毫秒级或者更高。在专用的时间服务器上,则精确度更高。
❺ GPS模块的授时精度是多少
第一,GPS授时的前提首先是定位,只有准确地知道接收机的坐标,才能完成授时。第二,对于双频GNSS接收机,GPS授时装置的授时精度主要受卫星轨道、卫星钟差、伪距测量精度的影响。如果采用BDS的GNSS授时,精度为30ns左右;如果仅釆用GPS授时,则精度小于5ns;Galileo授时精度与GPS相当,截止2017年5月,在我国可视卫星只有4颗,仅能满足最少授时的卫星数。第三,如果采用GNSS单频接收机,则GPS授时装置的授时精度还全在原来的基础上降低50ns左右。第四,对于山沟、有遮挡的一些地方,由于单系统授时可见卫星少,不能计算接收机坐标,可采用GNSS多系统授时,增加可视卫星数量,以加快授时速度。
目前已经发展到2020年了,我们自己的北斗卫星三代系统已经建成,北斗授时精度和GPS授时精度相当,在很多国家重要行业都开始选择用自己的北斗卫星授时或者是GPS北斗双模授时方案,这样不仅保证了授时的准确度和稳定性,还保证了在特殊时期,卫星授时不被别人停用干扰。
❻ 卫星授时服务器的卫星授时服务器设备的特点
一、GPS信息与信息时代
信息时代的特点:一是信息量急剧增加(如需海量存储器);二是信息传输的数字化(如数字通信的发展);三是信息享用的全球化(如互联网的普及);四是信息技术应用的集成化(如ITS---智能交通系统)。
信息的主要来源:
除互联网、电视网、移动通信网外,还有很重要的卫星信息源(如导航卫星能给出最重要的位置和时间信息;遥感卫星能给出各类地球表面的遥感数据)。
GPS信息的特点:
(1)全球覆盖、全天侯、昼夜全连续地工作;(2)单向广播体制,GPS接收机不发射信号,电磁兼容性能好,可有无限多的用户。但无通信功能;(3)可实时地为地面、海上和高空的各种动态和静态用户提供高精度的七维信息(三维位置、三维速度、和精密时间)。
GPS信息的应用领域:
大致可分为三类:(1)动态的导航定位,包括陆上各类车辆、水上各种舰船以及空中各类飞机和飞行器的导航定位;(2)静态的测绘定位,广泛用于地图的测绘、矿藏的勘探、铁路、公路、隧道的建设等;(3)精密的定时和时间同步,在国际时间协调、时频计量传递、数字通信、网络技术等领域十分有用。
二、GPS时间同步的原理与技术
1、有关时间的一些基本概念:
(1)、时间(周期)与频率:
互为倒数关系,两者密不可分,时间标准的基础是频率标准,所以有人把晶体振荡器叫‘时基振荡器’。钟是由频标加上分频电路和钟面显示装置构成的。
(2)、四种实用的时间频率标准源(简称钟):
①晶体钟
②铷原子钟
③氢原子钟
④铯原子钟
(3)、常用的时间坐标系:
时间的概念包含时刻(点)和时间间隔(段)。时系(时间坐标系)是由时间起点和时间尺度单位--秒定义(又分地球秒与原子秒)所构成。常用的时间坐标系:
① 世界时(UT)
②地方时
③原子时(AT)
④协调世界时(UTC)
⑤GPS时
(4)、定时、时间同步与守时:
①定时:是指根据参考时间标准对本地钟进行校准的过程);授时(指采用适当的手段发播标准时间的过程);
②时间同步:是指在母钟与子钟之间时间一致的过程,又称时间统一或简称时统);
③守时:是指将本地钟已校准的标准时间保持下去的过程,国内外守时中心一般都采用由多台铯原子钟和氢原子钟组成的守时钟组来进行守时,守时钟组钟长期运行性能表现最好的一台被定主钟(MC)。
2、GPS时间是怎样建立的?
为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)):
①每个GPS卫星上都装有铯子钟作星载钟;
②GPS全部卫星与地面测控站构成一个闭环的自动修正系统;
③采用UTC(USNO/MC)为参考基准。
3、GPS定位、定时和校频的原理
(1)、GPS定位原理:是基于精确测定GPS信号的传输时延(Δt),以得到GPS卫星到用户间的距离(R)R=C×Δt ----------------------- [1](式中C为光速)同时捕获4颗GPS卫星,解算4个联立方程,可给出用户实时时刻(t)和对应的位置参数(x、y、z)共4个参数。R={(Xs-Xu)2+(Ys-Yu)2+(Zs-Zu)}1/2 ---- [2](式中Xs、Ys、Zs为卫星的位置参数;Xu、Yu、Zu为用户的的位置参数)
(2)、GPS定时原理:
基于在用户端精确测定和扣除GPS时间信号的传输时延(Δt),以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差,主要误差有:
①信号发射端:卫星钟误差、卫星星历(位置)误差;
②信号传输过程:电离层误差、对流层误差、地面反射多路径误差;
③接收端:接收机时延误差、接收机坐标误差、接收机噪声误差。
(3)、GPS校频原理:
根据频率和周期互为倒数的关系,可采用比时法(测时间间隔)的方法(以GPS的秒信号为参考)来测量本地钟的频率准确度(Δf/f),以达到校频的目的。Δf/f=(Δt2-Δt1)/(t2-t1) ------------ [3](式中Δt2、Δt1分别为t2、t1时刻测得的本地钟与GPS时的时差值)。
4、进一步提高定时准确度的几种途径:
①采用GPS双频、相位测量技术;
②选用更高精度的GPS时间传递接收机;
③采用GPS共视法比对技术与卫星转发双向法技术。
三、GPS在时频领域的应用
1、国际时间标准的协调与建立:
从二十世纪八十年代末,国际计量局(BIPM)的时间部,就开始正式采用标准化的GPS共视比对方法,把全世界几十个守时中心的主钟沟通起来,并建立了准确度最高的国际原子时(TAI)和国际协调世界时(UTC/BIPM)。我国有三个实验室参加了国际时间标准的协调,它们是:
①中国科学院陕西天文台(CSAO);
②国家计量研究院(NIM);
③航天无线电计量测试研究所(BIRM)
2、新型时频计量传递系统的建立
(1)、传统时频计量传递的特点:
①一般是按国家级计量单位、一级计量站、二级计量站和使用单位四级逐级传递;
②受检时频标准源或仪器设备必须往返搬运,检定校准后的状态在搬运中难免受到破坏;
③传统的时频计量一般只能按检定周期(一般为一年)进行,难以进行经常性和实时的计量测试。
(2)、通过采用GPS共视法时间比对和互联网技术,可以建立不需搬运的、实时的、完全新型的时频遥远校准系统。
3、GPS时间同步技术在电信、电力和铁路领域的应用:
①我国的通信网已基本上实现了数字化,为了保证整个电信网络的正常运行、提高网络服务质量和增强网络功能,通信网必须采用高精度的时间同步技术。目前,我国的通信网采用的是4级时钟(铯原子钟、铷原子钟、高稳晶体钟和普通晶体钟)分级时间同步的方法。随着电信技术的发展,通信网时间同步精度的要求越来越高。这种分级时间同步的方法已不能满足要求。因此,我国的通信网迫切需要采用GPS时间同步技术。GPS时间同步技术的优点:精度高、可靠性好、成本较低。
②GPS时间同步技术在电力供电系统、铁路运输系统也有广阔的应用前景。
四、结语:
从以上的论述可以看出:GPS卫星信号是一种十分重要的全世界可共享的信息源,GPS信息可以提供精确的定位、定时和校频,GPS时间同步技术在国际时间频率的协调、新型时频计量传递系统建立、数字通信系统、电力和供电系统、铁路运输系统以及许多其他领域都有广阔的应用前景。
❼ GNSS接收机的授时精度如何标定,PPS的上升沿和下降沿和授时精度有何关系,脉冲宽度有何意义寻高手解答。
你好! 只是有GNSS接收机产品,不懂这个,也来占位学习下。 仅代表个人观点,不喜勿喷,谢谢。
❽ 如何保证时钟的准确性,精度大致是多少
如果想要保证时钟的准确性的话,首先要做的就是买一个精准度比较好的表。其次,每天让表上面的时间与网络上的时间相对比。可能最初的时候比较准确,等电池不好了或者进灰尘了时钟就会变慢。最后,每星期拆开表用干抹布擦拭时钟一次,没电的时候尽快更换电池,兑准确秒表时间。
如果说精度的话,这个需要根据实际情况来定。毕竟不同的表精度都不同,并不是每一个表的精度都是那么准确。买表的时候尽量买比较好的表可以提高精度,避免出现太大的误差。另外,表在不同的高度放置快慢还不一样,因此需要选择合理的位置摆放。只有这样,才能使其相对的精准度达到最高。
❾ gps授时时钟都有哪些必要的参数
gps授时时钟的NTP服务主板性能差异很大,千元级多为单片机,其内存只有几兆或几K,存储空间只有几M,而“北斗时频”的gps授时时钟性能,4G内存,64G固态盘存储空问,高可靠性的64位Linux服务器操作系统。性能完全不是一个级别。