图灵是什么类型的服务器
A. 计算机思维又称构造思维以什么和构造为特征
计算思维又叫构造思维,以设计和构造为特征,以计算机学科为代表的。它是运用计算机科学的基础概念去求解问题、设计系统和理解人类行为。其本质是抽象和自动化,通过约简、嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道怎样解决的问题,如同“读、写、算”能力一样,计算思维也是我们每个人都必须具备的思维能力。
计算思维是一种递归思维。它是并行处理。它是把代码译成数据又把数据译成代码。对于别名或赋予人与物多个名字的做法,它既知道其益处又了解其害处。对于间接寻址和程序调用的方法,它既知道其威力又了解其代价。它评价一个程序时,不仅仅根据其准确性和效率,还有美学的考量,而对于系统的设计,还考虑简洁和优雅。
B. 急!!!!急!!!!!!!!!急!!!!!计算机体系结构这门课所解决的问题以及解决的方法在线等
计算机体系结构(ComputerArchitecture)是程序员所看到的计算机的属性,即概念性结构与功能特性。按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。经典的关于“计算机体系结构(computerarchitecture)”的定义是1964年C.M.Amdahl在介绍IBM360系统时提出的,其具体描述为“计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性”
基本概念
计算机体系结构就是指适当地组织在一起的一系列系统元素的集合,这些系统元素互相配合、相互协作,通过对信息的处理而完成预先定义的目标。通常包含的系统元素有:计算机软件、计算机硬件、人员、数据库、文档和过程。其中,软件是程序、数据结构和相关文档的集合,用于实现所需要的逻辑方法、过程或控制;硬件是提供计算能力的电子设备和提供外部世界功能的电子机械设备(例如传感器、马达、水泵等);人员是硬件和软件的用户和操作者;数据库是通过软件访问的大型的、有组织的信息集合;文档是描述系统使用方法的手册、表格、图形及其他描述性信息;过程是一系列步骤,它们定义了每个系统元素的特定使用方法或系统驻留的过程性语境。 计算机体系结构
8种属性
1•机内数据表示:硬件能直接辨识和操作的数据类型和格式 计算机体系结构
2•寻址方式:最小可寻址单位、寻址方式的种类、地址运算 3•寄存器组织:操作寄存器、变址寄存器、控制寄存器及专用寄存器的定义、数量和使用规则 4•指令系统:机器指令的操作类型、格式、指令间排序和控制机构 5•存储系统:最小编址单位、编址方式、主存容量、最大可编址空间 6•中断机构:中断类型、中断级别,以及中断响应方式等 7•输入输出结构:输入输出的连接方式、处理机/存储器与输入输出设备间的数据交换方式、数据交换过程的控制 8•信息保护:信息保护方式、硬件信息保护机制。
编辑本段发展历程
计算机系统已经经历了四个不同的发展阶段。 计算机体系结构
第一阶段
60年代中期以前,是计算机系统发展的早期时代。在这个时期通用硬件已经相当普遍,软件却是为每个具体应用而专门编写的,大多数人认为软件开发是无需预先计划的事情。这时的软件实际上就是规模较小的程序,程序的编写者和使用者往往是同一个(或同一组)人。由于规模小,程序编写起来相当容易,也没有什么系统化的方法,对软件开发工作更没有进行任何管理。这种个体化的软件环境,使得软件设计往往只是在人们头脑中隐含进行的一个模糊过程,除了程序清单之外,根本没有其他文档资料保存下来。
第二阶段
从60年代中期到70年代中期,是计算机系统发展的第二代。在这10年中计算机技术有了很大进步。多道程序、多用户系统引入了人机交互的新概念,开创了计算机应用的新境界,使硬件和软件的配合上了一个新的层次。实时系统能够从多个信息源收集、分析和转换数据,从而使得进程控制能以毫秒而不是分钟来进行。在线存储技术的进步导致了第一代数据库管理系统的出现。计算机系统发展的第二代的一个重要特征是出现了“软件作坊”,广泛使用产品软件。但是,“软件作坊”基本上仍然沿用早期形成的个体化软件开发方法。随着计算机应用的日益普及,软件数量急剧膨胀。在程序运行时发现的错误必须设法改正;用户有了新的需求时必须相应地修改程序;硬件或操作系统更新时,通常需要修改程序以适应新的环境。上述种种软件维护工作,以令人吃惊的比例耗费资源。更严重的是,许多程序的个体化特性使得它们最终成为不可维护的。“软件危机”就这样开始出现了。1968年北大西洋公约组织的计算机科学家在联邦德国召开国际会议,讨论软件危机课题,在这次会议上正式提出并使用了“软件工程”这个名词,一门新兴的工程学科就此诞生了。
第三阶段
计算机系统发展的第三代从20世纪70年代中期开始,并且跨越了整整10年。在这10年中计算机技术又有了很大进步。分布式系统极大地增加亍计算机系统的复杂性,局域网、广域网、宽带数字通信以及对“即时”数据访问需求的增加,都对软件开发者提出了更高的要求。但是,在这个时期软件仍然主要在工业界和学术界应用,个人应用还很少。这个时期的主要特点是出现了微处理器,而且微处理器获得了广泛应用。以微处理器为核心的“智能”产品随处可见,当然,最重要的智能产品是个人计算机。在不到10年的时间里,个人计算机已经成为大众化的商品。 在计算机系统发展的第四代已经不再看重单台计算机和程序,人们感受到的是硬件和软件的综合效果。由复杂操作系统控制的强大的桌面机及局域网和广域网,与先进的应用软件相配合,已经成为当前的主流。计算机体系结构已迅速地从集中的主机环境转变成分布的客户机/服务器(或浏览器/服务器)环境。世界范围的信息网为人们进行广泛交流和资源的充分共享提供了条件。软件产业在世界经济中已经占有举足轻重的地位。随着时代的前进,新的技术也不断地涌现出来。面向对象技术已经在许多领域迅速地取代了传统的软件开发方法。
总结
软件开发的“第四代技术”改变了软件界开发计算机程序的方式。专家系统和人工智能软件终于从实验室中走出来进入了实际应用,解决了大量实际问题。应用模糊逻辑的人工神经网络软件,展现了模式识别与拟人信息处理的美好前景。虚拟现实技术与多媒体系统,使得与用户的通信可以采用和以前完全不同的方法。遗传算法使我们有可能开发出驻留在大型并行生物计算机上的软件。
编辑本段基本原理
计算机体系结构解决的是计算机系统在总体上、功能上需要解决的问题,它和计算机组成、计算机实现是不同的概念。一种体系结构可能有多种组成,一种组成也可能有多种物理实现。 计算机体系结构
计算机系统结构的逻辑实现,包括机器内部数据流和控制流的组成以及逻辑设计等。其目标是合理地把各种部件、设备组成计算机,以实现特定的系统结构,同时满足所希望达到的性能价格比。一般而言,计算机组成研究的范围包括:确定数据通路的宽度、确定各种操作对功能部件的共享程度、确定专用的功能部件、确定功能部件的并行度、设计缓冲和排队策略、设计控制机构和确定采用何种可靠技术等。计算机组成的物理实现。包括处理机、主存等部件的物理结构,器件的集成度和速度,器件、模块、插件、底板的划分与连接,专用器件的设计,信号传输技术,电源、冷却及装配等技术以及相关的制造工艺和技术。
编辑本段分类
Flynn分类法
1966年,Michael.J.Flynn提出根据指令流、数据流的多倍性(multiplicity)特征对计算机系统进行分类,定义如下。 •指令流:机器执行的指令序列 计算机体系结构
•数据流:由指令流调用的数据序列,包括输入数据和中间结果 •多倍性:在系统性能瓶颈部件上同时处于同一执行阶段的指令或数据的最大可能个数。 Flynn根据不同的指令流-数据流组织方式把计算机系统分为4类。 1•单指令流单数据流(,SISD) SISD其实就是传统的顺序执行的单处理器计算机,其指令部件每次只对一条指令进行译码,并只对一个操作部件分配数据。 2•单指令流多数据流(,SIMD) SIMD以并行处理机为代表,结构如图,并行处理机包括多个重复的处理单元PU1~PUn,由单一指令部件控制,按照同一指令流的要求为它们分配各自所需的不同的数据。 3•多指令流单数据流(,MISD) MISD的结构,它具有n个处理单元,按n条不同指令的要求对同一数据流及其中间结果进行不同的处理。一个处理单元的输出又作为另一个处理单元的输入。 4•多指令流多数据流(,MIMD) MIMD的结构,它是指能实现作业、任务、指令等各级全面并行的多机系统,多处理机就属于MIMD。(2)
冯式分类法
1972年冯泽云提出用最大并行度来对计算机体系结构进行分类。所谓最大并行度Pm是指计算机系统在单位时间内能够处理的最大的二进制位数。设每一个时钟周期△ti内能处理的二进制位数为Pi,则T个时钟周期内平均并行度为Pa=(∑Pi)/T(其中i为1,2,…,T)。平均并行度取决于系统的运行程度,与应用程序无关,所以,系统在周期T内的平均利用率为μ=Pa/Pm=(∑Pi)/(T*Pm)。用最大并行度对计算机体系结构进行的分类。用平面直角坐标系中的一点表示一个计算机系统,横坐标表示字宽(N位),即在一个字中同时处理的二进制位数;纵坐标表示位片宽度(M位),即在一个位片中能同时处理的字数,则最大并行度Pm=N*M。 由此得出四种不同的计算机结构: ①字串行、位串行(简称WSBS)。其中N=1,M=1。 ②字并行、位串行(简称WPBS)。其中N=1,M>1。 ③字串行、位并行(简称WSBP)。其中N>1,M=1。 ④字并行、位并行(简称WPBP)。其中N>1,M>1。
编辑本段技术革新
计算机体系结构以图灵机理论为基础,属于冯•诺依曼体系结构。本质上,图灵机理论和冯•诺依曼体系结构是一维串行的,而多核处理器则属于分布式离散的并行结构,需要解决二者的不匹配问题。 首先,串行的图灵机模型和物理上分布实现的多核处理器的匹配问题。图灵机模型意味着串行的编程模型。串行程序很难利用物理上分布实现的多个处理器核获得性能加速.与此同时,并行编程模型并没有获得很好的推广,仅仅局限在科学计算等有限的领域.研究者应该寻求合适的机制来实现串行的图灵机模型和物理上分布实现的多核处理器的匹配问题或缩小二者之间的差距,解决“并行程序编程困难,串行程序加速小”的问题。 计算机体系结构
在支持多线程并行应用方面,未来多核处理器应该从如下两个方向加以考虑。第一是引入新的能够更好的能够表示并行性的编程模型。由于新的编程模型支持编程者明确表示程序的并行性,因此可以极大的提升性能。比如Cell处理器提供不同的编程模型用于支持不同的应用。其难点在于如何有效推广该编程模型以及如何解决兼容性的问题。第二类方向是提供更好的硬件支持以减少并行编程的复杂性。并行程序往往需要利用锁机制实现对临界资源的同步、互斥操作,编程者必须慎重确定加锁的位置,因为保守的加锁策略限制了程序的性能,而精确的加锁策略大大增加了编程的复杂度。一些研究在此方面做了有效的探索。比如,SpeculativeLockElision机制允许在没有冲突的情况下忽略程序执行的锁操作,因而在降低编程复杂度的同时兼顾了并行程序执行的性能。这样的机制使得编程者集中精力考虑程序的正确性问题,而无须过多地考虑程序的执行性能。更激进的,(TCC)机制以多个访存操作(Transaction)为单位考虑数据一致性问题,进一步简化了并行编程的复杂度。 主流的商业多核处理器主要针对并行应用,如何利用多核加速串行程序仍然是一个值得关注的问题。其关键技术在于利用软件或硬件自动地从串新程序中派生出能够在多核处理器上并行执行的代码或线程。多核加速串行程序主要有三种方法,包括并行编译器、推测多线程以及基于线程的预取机制等。在传统并行编译中,编译器需要花费很大的精力来保证拟划分线程之间不存在数据依赖关系。编译时存在大量模糊依赖,尤其是在允许使用指针(如C程序)的情况下,编译器不得不采用保守策略来保证程序执行的正确性。这大大限制了串行程序可以挖掘的并发程度,也决定了并行编译器只能在狭窄范围使用。为解决这些问题,人们提出推测多线程以及基于线程的预取机制等。然而,从这种概念提出到现在为止,这个方向的研究大部分局限于学术界,仅有个别商业化处理器应用了这种技术,并且仅仅局限于特殊的应用领域。我们认为动态优化技术和推测多线程(包括基于线程的预取机制)的结合是未来的可能发展趋势。 冯•诺依曼体系结构的一维地址空间和多核处理器的多维访存层次的匹配问题。本质上,冯•诺依曼体系结构采用了一维地址空间。由于不均匀的数据访问延迟和同一数据在多个处理器核上的不同拷贝导致了数据一致性问题。该领域的研究分为两大类:一类研究主要是引入新的访存层次。新的访存层次可能采用一维分布式实现方式。典型的例子是增加分布式统一编址的寄存器网络。全局统一编址的特性避免了数据一致性地考虑。同时,相比于传统的大容量cache访问,寄存器又能提供更快的访问速度。TRIPS和RAW都有实现了类似得寄存器网络。令另外,新的访存层次也可以是私有的形式。比如每个处理器和都有自己私有的访存空间。其好处是更好的划分了数据存储空间,已洗局部私有数据没有必要考虑数据一致性问题。比如Cell处理器为每个SPE核设置了私有的数据缓冲区。另一类研究主要涉及研制新的cache一致性协议。其重要趋势是放松正确性和性能的关系。比如推测Cache协议在数据一致性未得到确认之前就推测执行相关指令,从而减少了长迟访存操作对流水线的影响。此外,TokenCoherence和TCC也采用了类似的思想。程序的多样性和单一的体系结构的匹配问题。未来的应用展现出多样性的特点。一方面,处理器的评估不仅仅局限于性能,也包括可靠性,安全性等其他指标。另一方面,即便考虑仅仅追求性能的提高,不同的应用程序也蕴含了不同层次的并行性。应用的多样性驱使未来的处理器具有可配置、灵活的体系结构。TRIPS在这方面作了富有成效的探索,比如其处理器核和片上存储系统均有可配置的能力,从而使得TRIPS能够同时挖掘指令级并行性、数据级并行性及指令级并行性。 多核和Cell等新型处理结构的出现不仅是处理器架构历史上具有里程碑式的事件,对传统以来的计算模式和计算机体系架构也是一种颠覆 2005年,一系列具有深远影响的计算机体系结构被曝光,有可能为未来十年的计算机体系结构奠定根本性的基础,至少为处理器乃至整个计算机体系结构做出了象征性指引。随着计算密度的提高,处理器和计算机性能的衡量标准和方式在发生变化,从应用的角度讲,讲究移动和偏向性能两者已经找到了最令人满意的结合点,并且有可能引爆手持设备的急剧膨胀。尽管现在手持设备也相对普及,在计算能力、可扩展性以及能耗上,完全起步到一台手持设备应该具备的作用;另一方面,讲究性能的服务器端和桌面端,开始考虑减少电力消耗赶上节约型社会的大潮流。 Cell本身适应这种变化,同样也是它自己创造了这种变化。因而从它开始就强调了不一样的设计风格,除了能够很好地进行多倍扩展外,处理器内部的SPU(SynergisticProcessorUnit协同处理单元)具有很好的扩展性,因而可以同时面对通用和专用的处理,实现处理资源的灵活重构。也就意味着,通过适当的软件控制,Cell能应付多种类型的处理任务,同时还能够精简设计的复杂。
C. 机器要通过图灵测试需要哪些技术
机器要通过图灵测试,所需的主要技术有:
1、人工智能技术,
2、图像识别技术。
人工智能的始祖阿兰·图灵提出了一种称作图灵试验的方法。此原则说:被测试的有一个人,另一个是声称自己有人类智力的机器。测试时,测试人与被测试人是分开的,测试人只有通过一些装置(如键盘)向被测试人问一些问题,这些问题随便是什么问题都可以。问过一些问题后,如果测试人能够正确地分出谁是人谁是机器,那机器就没有通过图灵测试,如果测试人没有分出谁是机器谁是人,那这个机器就是有人类智能的。
D. 计算机科学的“两本圣经”是什么
第一本:《算法导论》原书名——《Introction to Algorithms》,
第二本:高德纳(Donald E.Knuth)的《计算机程序设计艺术》(《The Art Of Computer Programming》)
计算机科学是一门包含各种各样与计算和信息处理相关主题的系统学科,从抽象的算法分析、形式化语法等等,到更具体的主题如编程语言、程序设计、软件和硬件等。计算机科学分为理论计算机科学和实验计算机科学两个部分。
(4)图灵是什么类型的服务器扩展阅读:
研究课题
①、计算机程序能做什么和不能做什么(可计算性);
②、如何使程序更高效的执行特定任务(算法和复杂性理论);
③、程序如何存取不同类型的数据(数据结构和数据库);
④、程序如何显得更具有智能(人工智能);
⑤、人类如何与程序沟通(人机互动和人机界面)。
相关奖项
计算机科学领域的最高荣誉是ACM设立的图灵奖,被誉为是计算机科学的诺贝尔奖。它的获得者都是本领域最为出色的科学家和先驱。华人中首获图灵奖的是姚期智先生.他于2000年以其对计算理论做出的诸多“根本性的、意义重大的”贡献而获得这一崇高荣誉。
专业介绍
培养目标
本专业培养德、智、体全面发展,具有计算机应用技术的基础理论知识,具备计算机及相关设备的维护与维修、行业应用软件、平面图像处理、广告设计制作、动画制作、计算机网络及网站建设与管理、数据库管理与维护等应用能力和操作能力的高等技术应用性人才。
计算机应用基础、计算机组装与维护、计算机局域网络的建设与管理、网络工程、操作系统、服务器、数据库的开发与应用、网站建设与网页设计、C/C++语言、Visual Basic语言、平面设计、3D图形设计、多媒体设计、专业英语。
就业方向
毕业生主要面向交通系统各单位、交通信息化与电子政务建设与应用部门、各类计算机专业化公司、广告设计制作公司、汽车营销技术服务等从事IT行业工作。
参考资料:网络-计算机科学
E. 怎样让图灵机器人永久在线,如何挂服务器
酷Q可以在网上下载插件结尾都是以.cqp.dll的文件,然后先打开机器人所在文件夹,在进入到plugin文件夹里面。把插件结尾都是以.cqp.dll的文件,复制进来。再打开酷Q,点击插件就可以看到了
F. 数据库这类软件 是干什么的
下面的资料是在网络找的,楼主有空可以看看。
我是做it的,跟你说说我的感受吧,仅供参考。
数据库是为了数据的存储和操作方便才使用的。如果不用也可以,有的时候,
把数据记录在文件上(如txt)也是可以的,但大量数据操作起来比较麻烦。
现在数据库类型多,大型小型都有,所以能用的话,还是比较方便的。
定义1
当人们从不同的角度来描述这一概念时就有不同的定义(当然是描述性的)。例如,称数据库是一个“记录保存系统”(该定义强调了数据库是若干记录的集合)。又如称数据库是“人们为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合”(该定义侧重于数据的组织)。更有甚者称数据库是“一个数据仓库”。当然,这种说法虽然形象,但并不严谨。
严格地说,数据库是“按照数据结构来组织、存储和管理数据的仓库”。在经济管理的日常工作中,常常需要把某些相关的数据放进这样“仓库”,并根据管理的需要进行相应的处理。例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
J.Martin给数据库下了一个比较完整的定义:数据库是存储在一起的相关数据的集合,这些数据是结构化的,无有害的或不必要的冗余,并为多种应用服务;数据的存储独立于使用它的程序;对数据库插入新数据,修改和检索原有数据均能按一种公用的和可控制的方式进行。当某个系统中存在结构上完全分开的若干个数据库时,则该系统包含一个“数据库集合”。
定义2
数据库是依照某种数据模型组织起来并存放二级存储器中的数据集合。这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改和检索由统一软件进行管理和控制。从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。
[编辑本段]数据库的基本结构
数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。
(1)物理数据层。
它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令操作处理的位串、字符和字组成。
(2)概念数据层。
它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。
(3)逻辑数据层。
它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。
数据库不同层次之间的联系是通过映射进行转换的。
[编辑本段]数据库的主要特点
(1)实现数据共享。
数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。
(2)减少数据的冗余度。
同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。
(3)数据的独立性。
数据的独立性包括数据库中数据库的逻辑结构和应用程序相互独立,也包括数据物理结构的变化不影响数据的逻辑结构。
(4)数据实现集中控制。
文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。
(5)数据一致性和可维护性,以确保数据的安全性和可靠性。
主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用;④故障的发现和恢复:由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏
[编辑本段]数据库发展阶段
数据库发展阶段大致划分为如下几个阶段:
人工管理阶段;
文件系统阶段;
数据库系统阶段;
高级数据库阶段。
[编辑本段]数据库结构与数据库种类
数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。
1.数据结构模型
(1)数据结构
所谓数据结构是指数据的组织形式或数据之间的联系。如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。例如,设有一个电话号码簿,它记录了n个人的名字和相应的电话号码。为了方便地查找某人的电话号码,将人名和号码按字典顺序排列,并在名字的后面跟随着对应的电话号码。这样,若要查找某人的电话号码(假定他的名字的第一个字母是Y),那么只须查找以Y开头的那些名字就可以了。该例中,数据的集合D就是人名和电话号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。(2)数据结构种类
数据结构又分为数据的逻辑结构和数据的物理结构。数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关。数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。
目前,比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。
2.层次、网状和关系数据库系统
(1)层次结构模型
层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。例如图20.6.4是一个高等学校的组织结构图。这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。
按照层次模型建立的数据库系统称为层次模型数据库系统。IMS(Information Manage-mentSystem)是其典型代表。
(2)网状结构模型
按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Data Base Task Group)。用数学方法可将网状数据结构转化为层次数据结构。
(3)关系结构模型
关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。例如某单位的职工关系就是一个二元关系。
由关系数据结构组成的数据库系统被称为关系数据库系统。
在关系数据库中,对数据的操作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。dBASEII就是这类数据库管理系统的典型代表。对于一个实际的应用问题(如人事管理问题),有时需要多个关系才能实现。用dBASEII建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。dBASEII的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。
[编辑本段]常用数据库
1. IBM 的DB2
作为关系数据库领域的开拓者和领航人,IBM在1997年完成了System R系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是sql/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括linux在内的一系列平台。
2. Oracle
Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。
3. Informix
Informix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。
4. Sybase
Sybase公司成立于1984年,公司名称“Sybase”取自“system”和“database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。
5. SQL Server
1987 年,微软和IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。
6. PostgreSQL
PostgreSQL 是一种特性非常齐全的自由软件的对象——关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统.
7.mySQL
mySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。MySQL的官方网站的网址是: www.mysql.com
[编辑本段]数据库发展史
数据库技术从诞生到现在,在不到半个世纪的时间里,形成了坚实的理论基础、成熟的商业产品和广泛的应用领域,吸引越来越多的研究者加入。数据库的诞生和发展给计算机信息管理带来了一场巨大的革命。三十多年来,国内外已经开发建设了成千上万个数据库,它已成为企业、部门乃至个人日常工作、生产和生活的基础设施。同时,随着应用的扩展与深入,数据库的数量和规模越来越大,数据库的研究领域也已经大大地拓广和深化了。30年间数据库领域获得了三次计算机图灵(C.W. Bachman,E.F.Codd, J.Gray),更加充分地说明了数据库是一个充满活力和创新精神的领域。就让我们沿着历史的轨迹,追溯一下数据库的发展历程。
一、数据库发展简史
1. 数据管理的诞生
数据库的历史可以追溯到五十年前,那时的数据管理非常简单。通过大量的分类、比较和表格绘制的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上打印出来或者制成新的穿孔卡片。而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。然而,1 9 5 1 年雷明顿兰德公司(Remington Rand Inc.)的一种叫做Univac I 的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。1956 年IBM生产出第一个磁盘驱动器—— the Model 305 RAMAC。此驱动器有50 个盘片,每个盘片直径是2 英尺,可以储存5MB的数据。使用磁盘最大的好处是可以随机地存取数据,而穿孔卡片和磁带只能顺序存取数据。
1951: Univac系统使用磁带和穿孔卡片作为数据存储。
数据库系统的萌芽出现于60 年代。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要。能够统一管理和共享数据的数据库管理系统(DBMS)应运而生。数据模型是数据库系统的核心和基础,各种DBMS 软件都是基于某种数据模型的。所以通常也按照数据模型的特点将传统数据库系统分成网状数据库、层次数据库和关系数据库三类。
最早出现的是网状 DBMS,是美国通用电气公司Bachman等人在1961年开发成功的IDS(Integrated DataStore)。1961年通用电气公司(General ElectricCo.)的Charles Bachman 成功地开发出世界上第一个网状DBMS也是第一个数据库管理系统—— 集成数据存储(Integrated DataStore IDS),奠定了网状数据库的基础,并在当时得到了广泛的发行和应用。IDS 具有数据模式和日志的特征。但它只能在GE主机上运行,并且数据库只有一个文件,数据库所有的表必须通过手工编码来生成。之后,通用电气公司一个客户——BF Goodrich Chemical 公司最终不得不重写了整个系统。并将重写后的系统命名为集成数据管理系统(IDMS)。
网状数据库模型对于层次和非层次结构的事物都能比较自然的模拟,在关系数据库出现之前网状DBMS要比层次DBMS用得普遍。在数据库发展史上,网状数据库占有重要地位。
层次型DBMS是紧随网络型数据库而出现的。最着名最典型的层次数据库系统是IBM 公司在1968 年开发的IMS
(Information Management System),一种适合其主机的层次数据库。这是IBM公司研制的最早的大型数据库系统程序产品。从60 年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支持。这个具有3 0 年历史的数据库产品在如今的WWW应用连接、商务智能应用中扮演着新的角色。
1973 年Cullinane 公司(也就是后来的Cullinet软件公司),开始出售Goodrich 公司的IDMS 改进版本,并且逐渐成为当时世界上最大的软件公司。
2. 关系数据库的由来
网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。而后来出现的关系数据库较好地解决了这些问题。
1970年,IBM的研究员E.F.Codd博士在刊物《Communication of the ACM》上发表了一篇名为“A Relational Model of Data for Large Shared Data Banks”的论文,提出了关系模型的概念,奠定了关系模型的理论基础。尽管之前在1968年Childs已经提出了面向集合的模型,然而这篇论文被普遍认为是数据库系统历史上具有划时代意义的里程碑。Codd的心愿是为数据库建立一个优美的数据模型。后来Codd又陆续发表多篇文章,论述了范式理论和衡量关系系统的12条标准,用数学理论奠定了关系数据库的基础。关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。但是当时也有人认为关系模型是理想化的数据模型,用来实现 DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有人视其为当时正在进行中的网状数据库规范化工作的严重威胁。为了促进对问题的理解,1974 年ACM牵头组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支持和反对关系数据库两派之间的辩论。这次着名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。
1969: Edgar F。“Ted” Codd发明了关系数据库
1970年关系模型建立之后,IBM公司在San Jose实验室增加了更多的研究人员研究这个项目,这个项目就是着名的System R。其目标是论证一个全功能关系DBMS的可行性。该项目结束于1979年,完成了第一个实现SQL的 DBMS。然而IBM对IMS的承诺阻止了System R的投产,一直到1980年System R才作为一个产品正式推向市场。IBM产品化步伐缓慢的三个原因:IBM重视信誉,重视质量,尽量减少故障;IBM是个大公司,官僚体系庞大;IBM内部已经有层次数据库产品,相关人员不积极,甚至反对。
然而同时,1973年加州大学伯克利分校的Michael Stonebraker和Eugene Wong利用System R已发布的信息开始开发自己的关系数据库系统Ingres。他们开发的Ingres项目最后由Oracle公司、Ingres公司以及硅谷的其他厂商所商品化。后来,System R和Ingres系统双双获得ACM的1988年“软件系统奖”。
1976年霍尼韦尔公司(Honeywell)开发了第一个商用关系数据库系统——Multics Relational Data Store。关系型数据库系统以关系代数为坚实的理论基础,经过几十年的发展和实际应用,技术越来越成熟和完善。其代表产品有Oracle、IBM公司的 DB2、微软公司的MS SQL Server以及Informix、ADABASD等等。
3. 结构化查询语言 (SQL)
1974 年,IBM的Ray Boyce和Don Chamberlin将Codd关系数据库的12条准则的数学定义以简单的关键字语法表现出来,里程碑式地提出了SQL(Structured Query Language)语言。SQL语言的功能包括查询、操纵、定义和控制,是一个综合的、通用的关系数据库语言,同时又是一种高度非过程化的语言,只要求用户指出做什么而不需要指出怎么做。SQL集成实现了数据库生命周期中的全部操作。SQL提供了与关系数据库进行交互的方法,它可以与标准的编程语言一起工作。自产生之日起,SQL语言便成了检验关系数据库的试金石,而SQL语言标准的每一次变更都指导着关系数据库产品的发展方向。然而,直到二十世纪七十年代中期,关系理论才通过SQL在商业数据库Oracle和DB2中使用。
1986年,ANSI把SQL作为关系数据库语言的美国标准,同年公布了标准SQL文本。目前SQL标准有3个版本。基本SQL定义是ANSIX3135-89,“Database Language - SQL with Integrity Enhancement”[ANS89],一般叫做SQL-89。SQL-89定义了模式定义、数据操作和事务处理。
SQL- 89和随后的ANSIX3168-1989,“Database Language-Embedded SQL”构成了第一代SQL标准。ANSIX3135-1992[ANS92]描述了一种增强功能的SQL,现在叫做SQL-92标准。SQL-92包括模式操作,动态创建和SQL语句动态执行、网络环境支持等增强特性。在完成SQL-92标准后,ANSI和ISO即开始合作开发SQL3标准。SQL3的主要特点在于抽象数据类型的支持,为新一代对象关系数据库提供了标准。
1969:Edgar F. Codd发明了关系数据库
1976 年IBM E.F.Codd发表了一篇里程碑的论文“R系统:数据库关系理论”,介绍了关系数据库理论和查询语言SQL。Oracle的创始人Ellison非常仔细地阅读了这篇文章,被其内容震惊,这是第一次有人用全面一致的方案管理数据信息。作者E.F.Codd十年前就发表了关系数据库理论,并在IBM 研究机构开发原型,这个项目就是R系统,存取数据表的语言就是SQL。Ellison看完后,敏锐意识到在这个研究基础上可以开发商用软件系统。而当时大多数人认为关系数据库不会有商业价值。Ellison认为这是他们的机会:他们决定开发通用商用数据库系统Oracle,这个名字来源于他们曾给中央情报局做过的项目名。几个月后,他们就开发了Oracle 1.0 。但这只不过是个玩具,除了完成简单关系查询不能做任何事情,他们花相当长的时间才使Oracle变得可用,维持公司运转主要靠承接一些数据库管理项目和做顾问咨询工作。而IBM却没有计划开发,为什么蓝色巨人放弃了这个价值上百亿的产品,原因有很多:IBM的研究人员大多是学术出身,他们最感兴趣的是理论,而非推向市场的产品,从学术上看,研究成果应公开,发表论文和演讲能使他们成名,为什么不呢?还有一个很主要的原因就是IBM 当时有一个销售得还不错的层次数据库产品IMS。直到1985年I B M 才发布了关系数据库D B 2 ,Ellision那时已经成了千万富翁。Ellison曾将IBM 选择Microsoft 的MS-DOS作为IBM-PC机的操作系统比为:“世界企业经营历史上最严重的错误,价值超过了上千亿美元。”IBM 发表R系统论文,而且没有很快推出关系数据库产品的错误可能仅仅次之。Oracle 的市值在1996年就达到了280亿美元。
目前SQL标准有3个版本。基本SQL定义是ANSIX3135-89,“DatabaseLan guage —— SQL with IntegrityEnhancement”[ANS89],一般叫做SQL-89。SQL-89 定义了模式定义、数据操作和事务处理。S Q L - 8 9 和随后的ANSIX3168-1989,“Database Language——Embedded SQL”构成了第一代SQL标准。ANSIX3135-1992[ANS92]描述了一种增强功能的SQL,现在叫做SQL-92标准。SQL-92 包括模式操作,动态创建和SQL语句动态执行、网络环境支持等增强特性。在完成SQL-92标准后,ANSI和ISO即开始合作开发SQL3标准。 SQL3的主要特点在于抽象数据类型的支持,为新一代对象关系数据库提供了标准。
4. 面向对象数据库
随着信息技术和市场的发展,人们发现关系型数据库系统虽然技术很成熟,但其局限性也是显而易见的:它能很好地处理所谓的“表格型数据”,却对技术界出现的越来越多的复杂类型的数据无能为力。九十年代以后,技术界一直在研究和寻求新型数据库系统。但在什么是新型数据库系统的发展方向的问题上,产业界一度是相当困惑的。受当时技术风潮的影响,在相当一段时间内,人们把大量的精力花在研究“面向对象的数据库系统(object oriented database)”或简称“OO数据库系统”。值得一提的是,美国Stonebraker教授提出的面向对象的关系型数据库理论曾一度受到产业界的青睐。而Stonebraker本人也在当时被Informix花大价钱聘为技术总负责人。
然而,数年的发展表明,面向对象的关系型数据库系统产品的市场发展的情况并不理想。理论上的完美性并没有带来市场的热烈反应。其不成功的主要原因在于,这种数据库产品的主要设计思想是企图用新型数据库系统来取代现有的数据库系统。这对许多已经运用数据库系统多年并积累了大量工作数据的客户,尤其是大客户来说,是无法承受新旧数据间的转换而带来的巨大工作量及巨额开支的。另外,面向对象的关系型数据库系统使查询语言变得极其复杂,从而使得无论是数据库的开发商家还是应用客户都视其复杂的应用技术为畏途。
5. 数据管理的变革
二十世纪六十年代后期出现了一种新型数据库软件:决定支持系统(DSS),其目的是让管理者在决策过程中更有效地利用数据信息。于是在1970年, 第一个联机分析处理工具——Express诞生了。其他决策支持系统紧随其后,许多是由公司的IT部门开发出来的。
1985年,第一个商务智能系统(business intelligence)由Metaphor计算机系统有限公司为Procter & Gamble公司开发出来,主要是用来连接销售信息和零售的扫描仪数据。同年, Pilot 软件公司开始出售第一个商用客户/服务器执行信息系统——Command Center。同样在这年,加州大学伯克利分校Ingres项目演变成Postgres,其目标是开发出一个面向对象的数据库。此后一年, Graphael公司开发了第一个商用的对象数据库系统—Gbase。
1988年,IBM公司的研究者Barry Devlin和Paul Murphy发明了一个新的术语—信息仓库,之后,IT的厂商开始构建实验性的数据仓库。1991年,W.H. "Bill" Inmon出版了一本“如何构建数据仓库”的书,使得数据仓库真正开始应用。
1991: W.H.“Bill” Inmon发表了”构建数据仓库”
二十世纪九十年代,随着基于PC的客户/服务器计算模式和企业软件包的广泛采用,数据管理的变革基本完成。数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。Internet的异军突起以及XML语言的出现,给数据库系统的发展开辟了一片新的天地。
[编辑本段]数据库未来发展趋势
随着信息管理内容的不断扩展,出现了丰富多样的数据模型(层次模型,网状模型,关系模型,面向对象模型,半结构化模型等),新技术也层出不穷(数据流,Web数据管理,数据挖掘等)。目前每隔几年,国际上一些资深的数据库专家就会聚集一堂,探讨数据库研究现状,存在的问题和未来需要关注的新技术焦点。过去已有的几个类似报告包括:1989 年Future Directions inDBMS Research-The Laguna BeachParticipants ,1990 年DatabaseSystems : Achievements and Opportunities ,1995 年的Database 1991:W.H. Inmon 发表了《构建数据仓库》
G. 计算机的体系结构,组成和实现各自处理哪些方面的问题
计算机体系结构(ComputerArchitecture)是程序员所看到的计算机的属性,即概念性结构与功能特性。按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。经典的关于“计算机体系结构(computerarchitecture)”的定义是1964年C.M.Amdahl在介绍IBM360系统时提出的,其具体描述为“计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性” 。
计算机体系结构
2基本概念编辑
计算机体系结构就是指适当地组织在一起的一系列系统元素的集合,这些系统元素互相配合、相互协作,通过对信息的处理而完成预先定义的目标。通常包含的系统元素有:计算机软件、计算机硬件、人员、数据库、文档和过程。其中,软件是程序、数据库和相关文档的集合,用于实现所需要的逻辑方法、过程或控制;硬件是提供计算能力的电子设备和提供外部世界功能的电子机械设备(例如传感器、马达、水泵等);人员是硬件和软件的用户和操作者;数据库是通过软件访问的大型的、有组织的信息集合;文档是描述系统使用方法的手册、表格、图形及其他描述性信息;过程是一系列步骤,它们定义了每个系统元素的特定使用方法或系统驻留的过程性语境。
计算机体系结构
38种属性编辑
1·机内数据表示:硬件能直接辨识和操作的数据类型和格式
计算机体系结构
2·寻址方式:最小可寻址单位、寻址方式的种类、地址运算
3·寄存器组织:操作寄存器、变址寄存器、控制寄存器及专用寄存器的定义、数量和使用规则
4·指令系统:机器指令的操作类型、格式、指令间排序和控制机构
5·存储系统:最小编址单位、编址方式、主存容量、最大可编址空间
6·中断机构:中断类型、中断级别,以及中断响应方式等
7·输入输出结构:输入输出的连接方式、处理机/存储器与输入输出设备间的数据交换方式、数据交换过程的控制
8·信息保护:信息保护方式、硬件信息保护机制。
4发展历程编辑
计算机系统已经经历了四个不同的发展阶段。
计算机体系结构
第一阶段
60年代中期以前,是计算机系统发展的早期时代。在这个时期通用硬件已经相当普遍,软件却是为每个具体应用而专门编写的,大多数人认为软件开发是无需预先计划的事情。这时的软件实际上就是规模较小的程序,程序的编写者和使用者往往是同一个(或同一组)人。由于规模小,程序编写起来相当容易,也没有什么系统化的方法,对软件开发工作更没有进行任何管理。这种个体化的软件环境,使得软件设计往往只是在人们头脑中隐含进行的一个模糊过程,除了程序清单之外,根本没有其他文档资料保存下来。
第二阶段
从60年代中期到70年代中期,是计算机系统发展的第二代。在这10年中计算机技术有了很大进步。多道程序、多用户系统引入了人机交互的新概念,开创了计算机应用的新境界,使硬件和软件的配合上了一个新的层次。实时系统能够从多个信息源收集、分析和转换数据,从而使得进程控制能以毫秒而不是分钟来进行。在线存储技术的进步导致了第一代数据库管理系统的出现。计算机系统发展的第二代的一个重要特征是出现了“软件作坊”,广泛使用产品软件。但是,“软件作坊”基本上仍然沿用早期形成的个体化软件开发方法。随着计算机应用的日益普及,软件数量急剧膨胀。在程序运行时发现的错误必须设法改正;用户有了新的需求时必须相应地修改程序;硬件或操作系统更新时,通常需要修改程序以适应新的环境。上述种种软件维护工作,以令人吃惊的比例耗费资源。更严重的是,许多程序的个体化特性使得它们最终成为不可维护的。“软件危机”就这样开始出现了。1968年北大西洋公约组织的计算机科学家在联邦德国召开国际会议,讨论软件危机课题,在这次会议上正式提出并使用了“软件工程”这个名词,一门新兴的工程学科就此诞生了。
第三阶段
计算机系统发展的第三代从20世纪70年代中期开始,并且跨越了整整10年。在这10年中计算机技术又有了很大进步。分布式系统极大地增加亍计算机系统的复杂性,局域网、广域网、宽带数字通信以及对“即时”数据访问需求的增加,都对软件开发者提出了更高的要求。但是,在这个时期软件仍然主要在工业界和学术界应用,个人应用还很少。这个时期的主要特点是出现了微处理器,而且微处理器获得了广泛应用。以微处理器为核心的“智能”产品随处可见,当然,最重要的智能产品是个人计算机。在不到10年的时间里,个人计算机已经成为大众化的商品。
在计算机系统发展的第四代已经不再看重单台计算机和程序,人们感受到的是硬件和软件的综合效果。由复杂操作系统控制的强大的桌面机及局域网和广域网,与先进的应用软件相配合,已经成为当前的主流。计算机体系结构已迅速地从集中的主机环境转变成分布的客户机/服务器(或浏览器/服务器)环境。世界范围的信息网为人们进行广泛交流和资源的充分共享提供了条件。软件产业在世界经济中已经占有举足轻重的地位。随着时代的前进,新的技术也不断地涌现出来。面向对象技术已经在许多领域迅速地取代了传统的软件开发方法。
总结
软件开发的“第四代技术”改变了软件界开发计算机程序的方式。专家系统和人工智能软件终于从实验室中走出来进入了实际应用,解决了大量实际问题。应用模糊逻辑的人工神经网络软件,展现了模式识别与拟人信息处理的美好前景。虚拟现实技术与多媒体系统,使得与用户的通信可以采用和以前完全不同的方法。遗传算法使我们有可能开发出驻留在大型并行生物计算机上的软件。
5基本原理编辑
计算机体系结构解决的是计算机系统在总体上、功能上需要解决的问题,它和计算机组成、计算机实现是不同的概念。一种体系结构可能有多种组成,一种组成也可能有多种物理实现。
计算机系统结构的逻辑实现,包括机器内部数据流和控制流的组成以及逻辑设计等。其目标是合理地把各种部件、设备组成计算机,以实现特定的系统结构,同时满足所希望达到的性能价格比。一般而言,计算机组成研究的范围包括:确定数据通路的宽度、确定各种操作对功能部件的共享程度、确定专用的功能部件、确定功能部件的并行度、设计缓冲和排队策略、设计控制机构和确定采用何种可靠技术等。计算机组成的物理实现。包括处理机、主存等部件的物理结构,器件的集成度和速度,器件、模块、插件、底板的划分与连接,专用器件的设计,信号传输技术,电源、冷却及装配等技术以及相关的制造工艺和技术。
6分类编辑
Flynn分类法
1966年,Michael.J.Flynn提出根据指令流、数据流的多倍性(multiplicity)特征对计算机系统进行分类,定义如下。
·指令流:机器执行的指令序列
计算机体系结构
·数据流:由指令流调用的数据序列,包括输入数据和中间结果
·多倍性:在系统性能瓶颈部件上同时处于同一执行阶段的指令或数据的最大可能个数。
Flynn根据不同的指令流-数据流组织方式把计算机系统分为4类。
1·单指令流单数据流(,SISD)
SISD其实就是传统的顺序执行的单处理器计算机,其指令部件每次只对一条指令进行译码,并只对一个操作部件分配数据。
2·单指令流多数据流(,SIMD)
SIMD以并行处理机为代表,结构如图,并行处理机包括多个重复的处理单元PU1~PUn,由单一指令部件控制,按照同一指令流的要求为它们分配各自所需的不同的数据。
3·多指令流单数据流(,MISD)
MISD的结构,它具有n个处理单元,按n条不同指令的要求对同一数据流及其中间结果进行不同的处理。一个处理单元的输出又作为另一个处理单元的输入。
4·多指令流多数据流(,MIMD)
MIMD的结构,它是指能实现作业、任务、指令等各级全面并行的多机系统,多处理机就属于MIMD。(2)
冯式分类法
1972年冯泽云提出用最大并行度来对计算机体系结构进行分类。所谓最大并行度Pm是指计算机系统在单位时间内能够处理的最大的二进制位数。设每一个时钟周期△ti内能处理的二进制位数为Pi,则T个时钟周期内平均并行度为Pa=(∑Pi)/T(其中i为1,2,…,T)。平均并行度取决于系统的运行程度,与应用程序无关,所以,系统在周期T内的平均利用率为μ=Pa/Pm=(∑Pi)/(T*Pm)。用最大并行度对计算机体系结构进行的分类。用平面直角坐标系中的一点表示一个计算机系统,横坐标表示字宽(N位),即在一个字中同时处理的二进制位数;纵坐标表示位片宽度(M位),即在一个位片中能同时处理的字数,则最大并行度Pm=N*M。
由此得出四种不同的计算机结构:
①字串行、位串行(简称WSBS)。其中N=1,M=1。
②字并行、位串行(简称WPBS)。其中N=1,M>1。
③字串行、位并行(简称WSBP)。其中N>1,M=1。
④字并行、位并行(简称WPBP)。其中N>1,M>1。
7技术革新编辑
计算机体系结构以图灵机理论为基础,属于冯·诺依曼体系结构。本质上,图灵机理论和冯·诺依曼体系结构是一维串行的,而多核处理器则属于分布式离散的并行结构,需要解决二者的不匹配问题。
首先,串行的图灵机模型和物理上分布实现的多核处理器的匹配问题。图灵机模型意味着串行的编程模型。串行程序很难利用物理上分布实现的多个处理器核获得性能加速.与此同时,并行编程模型并没有获得很好的推广,仅仅局限在科学计算等有限的领域.研究者应该寻求合适的机制来实现串行的图灵机模型和物理上分布实现的多核处理器的匹配问题或缩小二者之间的差距,解决“并行程序编程困难,串行程序加速小”的问题。
计算机体系结构
在支持多线程并行应用方面,未来多核处理器应该从如下两个方向加以考虑。第一是引入新的能够更好的能够表示并行性的编程模型。由于新的编程模型支持编程者明确表示程序的并行性,因此可以极大的提升性能。比如Cell处理器提供不同的编程模型用于支持不同的应用。其难点在于如何有效推广该编程模型以及如何解决兼容性的问题。第二类方向是提供更好的硬件支持以减少并行编程的复杂性。并行程序往往需要利用锁机制实现对临界资源的同步、互斥操作,编程者必须慎重确定加锁的位置,因为保守的加锁策略限制了程序的性能,而精确的加锁策略大大增加了编程的复杂度。一些研究在此方面做了有效的探索。比如,SpeculativeLockElision机制允许在没有冲突的情况下忽略程序执行的锁操作,因而在降低编程复杂度的同时兼顾了并行程序执行的性能。这样的机制使得编程者集中精力考虑程序的正确性问题,而无须过多地考虑程序的执行性能。更激进的,(TCC)机制以多个访存操作(Transaction)为单位考虑数据一致性问题,进一步简化了并行编程的复杂度。
主流的商业多核处理器主要针对并行应用,如何利用多核加速串行程序仍然是一个值得关注的问题。其关键技术在于利用软件或硬件自动地从串新程序中派生出能够在多核处理器上并行执行的代码或线程。多核加速串行程序主要有三种方法,包括并行编译器、推测多线程以及基于线程的预取机制等。在传统并行编译中,编译器需要花费很大的精力来保证拟划分线程之间不存在数据依赖关系。编译时存在大量模糊依赖,尤其是在允许使用指针(如C程序)的情况下,编译器不得不采用保守策略来保证程序执行的正确性。这大大限制了串行程序可以挖掘的并发程度,也决定了并行编译器只能在狭窄范围使用。为解决这些问题,人们提出推测多线程以及基于线程的预取机制等。然而,从这种概念提出到现在为止,这个方向的研究大部分局限于学术界,仅有个别商业化处理器应用了这种技术,并且仅仅局限于特殊的应用领域。我们认为动态优化技术和推测多线程(包括基于线程的预取机制)的结合是未来的可能发展趋势。
冯·诺依曼体系结构的一维地址空间和多核处理器的多维访存层次的匹配问题。本质上,冯·诺依曼体系结构采用了一维地址空间。由于不均匀的数据访问延迟和同一数据在多个处理器核上的不同拷贝导致了数据一致性问题。该领域的研究分为两大类:一类研究主要是引入新的访存层次。新的访存层次可能采用一维分布式实现方式。典型的例子是增加分布式统一编址的寄存器网络。全局统一编址的特性避免了数据一致性地考虑。同时,相比于传统的大容量cache访问,寄存器又能提供更快的访问速度。TRIPS和RAW都有实现了类似得寄存器网络。另外,新的访存层次也可以是私有的形式。比如每个处理器和都有自己私有的访存空间。其好处是更好的划分了数据存储空间,已洗局部私有数据没有必要考虑数据一致性问题。比如Cell处理器为每个SPE核设置了私有的数据缓冲区。另一类研究主要涉及研制新的cache一致性协议。其重要趋势是放松正确性和性能的关系。比如推测Cache协议在数据一致性未得到确认之前就推测执行相关指令,从而减少了长迟访存操作对流水线的影响。此外,TokenCoherence和TCC也采用了类似的思想。程序的多样性和单一的体系结构的匹配问题。未来的应用展现出多样性的特点。一方面,处理器的评估不仅仅局限于性能,也包括可靠性,安全性等其他指标。另一方面,即便考虑仅仅追求性能的提高,不同的应用程序也蕴含了不同层次的并行性。应用的多样性驱使未来的处理器具有可配置、灵活的体系结构。TRIPS在这方面作了富有成效的探索,比如其处理器核和片上存储系统均有可配置的能力,从而使得TRIPS能够同时挖掘指令级并行性、数据级并行性及指令级并行性。
多核和Cell等新型处理结构的出现不仅是处理器架构历史上具有里程碑式的事件,对传统以来的计算模式和计算机体系架构也是一种颠覆
2005年,一系列具有深远影响的计算机体系结构被曝光,有可能为未来十年的计算机体系结构奠定根本性的基础,至少为处理器乃至整个计算机体系结构做出了象征性指引。随着计算密度的提高,处理器和计算机性能的衡量标准和方式在发生变化,从应用的角度讲,讲究移动和偏向性能两者已经找到了最令人满意的结合点,并且有可能引爆手持设备的急剧膨胀。尽管现在手持设备也相对普及,在计算能力、可扩展性以及能耗上,完全起到了一台手持设备应该具备的作用;另一方面,讲究性能的服务器端和桌面端,开始考虑减少电力消耗赶上节约型社会的大潮流。
Cell本身适应这种变化,同样也是它自己创造了这种变化。因而从它开始就强调了不一样的设计风格,除了能够很好地进行多倍扩展外,处理器内部的SPU(SynergisticProcessorUnit协同处理单元)具有很好的扩展性,因而可以同时面对通用和专用的处理,实现处理资源的灵活重构。也就意味着,通过适当的软件控制,Cell能应付多种类型的处理任务,同时还能够精简设计的复杂。
H. 怎么将图灵机器人部署在linux服务器
具体代码如下:<?php
$ch = curl_init();
$timeout = 5;
curl_setopt ($ch, CURLO搜索PT_URL, '');
curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ch, CURLOPT_CONNECTTIMEOUT, $timeout);
$file_contents = curl_exec($ch);
curl_close($ch);
echo $file_contents;
?>
?PHP 独特的语法混合了C、Java、Perl以及PHP自创的语法。
它可以比CGI或者Perl更快速地执行动态网页。用PHP做出的动态页面与其他的编程语言相比,PHP是将程序嵌入到HTML(标准通用标记语言下的一个应用)文档中去执行,
执行效率比完全生成HTML标记的CGI要高许多;
PHP还可以执行编译后代码,编译可以达到加密和优化代码运行,使代码运行更快。