如何攻击linux服务器TCP
A. 如何提高linux服务器的安全策略
安全是IT行业一个老生常谈的话题了,处理好信息安全问题已变得刻不容缓。做为运维人员,就必须了解一些安全运维准则,同时,要保护自己所负责的业务,首先要站在攻击者的角度思考问题,修补任何潜在的威胁和漏洞。主要分五部分展开:账户和登录安全账户安全是系统安全的第一道屏障,也是系统安全的核心,保障登录账户的安全,在一定程度上可以提高服务器的安全级别,下面重点介绍下Linux系统登录账户的安全设置方法。
1、删除特殊的账户和账户组 Linux提供了各种不同角色的系统账号,在系统安装完成后,默认会安装很多不必要的用户和用户组,如果不需要某些用户或者组,就要立即删除它,因为账户越多,系统就越不安全,很可能被黑客利用,进而威胁到服务器的安全。
Linux系统中可以删除的默认用户和组大致有如下这些:
可删除的用户,如adm,lp,sync,shutdown,halt,news,uucp,operator,games,gopher等。
可删除的组,如adm,lp,news,uucp,games,dip,pppusers,popusers,slipusers等。
2、关闭系统不需要的服务Linux在安装完成后,绑定了很多没用的服务,这些服务默认都是自动启动的。对于服务器来说,运行的服务越多,系统就越不安全,越少服务在运行,安全性就越好,因此关闭一些不需要的服务,对系统安全有很大的帮助。具体哪些服务可以关闭,要根据服务器的用途而定,一般情况下,只要系统本身用不到的服务都认为是不必要的服务。例如:某台Linux服务器用于www应用,那么除了httpd服务和系统运行是必须的服务外,其他服务都可以关闭。下面这些服务一般情况下是不需要的,可以选择关闭: anacron、auditd、autofs、avahi-daemon、avahi-dnsconfd、bluetooth、cpuspeed、firstboot、gpm、haldaemon、hidd、ip6tables、ipsec、isdn、lpd、mcstrans、messagebus、netfs、nfs、nfslock、nscd、pcscd portmap、readahead_early、restorecond、rpcgssd、rpcidmapd、rstatd、sendmail、setroubleshoot、yppasswdd ypserv
3、密码安全策略在Linux下,远程登录系统有两种认证方式:密码认证和密钥认证。密码认证方式是传统的安全策略,对于密码的设置,比较普遍的说法是:至少6个字符以上,密码要包含数字、字母、下划线、特殊符号等。设置一个相对复杂的密码,对系统安全能起到一定的防护作用,但是也面临一些其他问题,例如密码暴力破解、密码泄露、密码丢失等,同时过于复杂的密码对运维工作也会造成一定的负担。密钥认证是一种新型的认证方式,公用密钥存储在远程服务器上,专用密钥保存在本地,当需要登录系统时,通过本地专用密钥和远程服务器的公用密钥进行配对认证,如果认证成功,就成功登录系统。这种认证方式避免了被暴力破解的危险,同时只要保存在本地的专用密钥不被黑客盗用,攻击者一般无法通过密钥认证的方式进入系统。因此,在Linux下推荐用密钥认证方式登录系统,这样就可以抛弃密码认证登录系统的弊端。Linux服务器一般通过SecureCRT、putty、Xshell之类的工具进行远程维护和管理,密钥认证方式的实现就是借助于SecureCRT软件和Linux系统中的SSH服务实现的。
4、合理使用su、sudo命令su命令:是一个切换用户的工具,经常用于将普通用户切换到超级用户下,当然也可以从超级用户切换到普通用户。为了保证服务器的安全,几乎所有服务器都禁止了超级用户直接登录系统,而是通过普通用户登录系统,然后再通过su命令切换到超级用户下,执行一些需要超级权限的工作。通过su命令能够给系统管理带来一定的方便,但是也存在不安全的因素,例如:系统有10个普通用户,每个用户都需要执行一些有超级权限的操作,就必须把超级用户的密码交给这10个普通用户,如果这10个用户都有超级权限,通过超级权限可以做任何事,那么会在一定程度上对系统的安全造成了威协。因此su命令在很多人都需要参与的系统管理中,并不是最好的选择,超级用户密码应该掌握在少数人手中,此时sudo命令就派上用场了。sudo命令:允许系统管理员分配给普通用户一些合理的“权利”,并且不需要普通用户知道超级用户密码,就能让他们执行一些只有超级用户或其他特许用户才能完成的任务。比如:系统服务重启、编辑系统配置文件等,通过这种方式不但能减少超级用户登录次数和管理时间,也提高了系统安全性。因此,sudo命令相对于权限无限制性的su来说,还是比较安全的,所以sudo也被称为受限制的su,另外sudo也是需要事先进行授权认证的,所以也被称为授权认证的su。
sudo执行命令的流程是:将当前用户切换到超级用户下,或切换到指定的用户下,然后以超级用户或其指定切换到的用户身份执行命令,执行完成后,直接退回到当前用户,而这一切的完成要通过sudo的配置文件/etc/sudoers来进行授权。
sudo设计的宗旨是:赋予用户尽可能少的权限但仍允许它们完成自己的工作,这种设计兼顾了安全性和易用性,因此,强烈推荐通过sudo来管理系统账号的安全,只允许普通用户登录系统,如果这些用户需要特殊的权限,就通过配置/etc/sudoers来完成,这也是多用户系统下账号安全管理的基本方式。
5、删减系统登录欢迎信息 系统的一些欢迎信息或版本信息,虽然能给系统管理者带来一定的方便,但是这些信息有时候可能被黑客利用,成为攻击服务器的帮凶,为了保证系统的安全,可以修改或删除某些系统文件,需要修改或删除的文件有4个,分别是:/etc/issue、/etc/issue.net、/etc/redhat-release和/etc/motd。/etc/issue和/etc/issue.net文件都记录了操作系统的名称和版本号,当用户通过本地终端或本地虚拟控制台等登录系统时,/etc/issue的文件内容就会显示,当用户通过ssh或telnet等远程登录系统时,/etc/issue.net文件内容就会在登录后显示。在默认情况下/etc/issue.net文件的内容是不会在ssh登录后显示的,要显示这个信息可以修改/etc/ssh/sshd_config文件,在此文件中添加如下内容即可:Banner /etc/issue.net其实这些登录提示很明显泄漏了系统信息,为了安全起见,建议将此文件中的内容删除或修改。/etc/redhat-release文件也记录了操作系统的名称和版本号,为了安全起见,可以将此文件中的内容删除/etc/motd文件是系统的公告信息。每次用户登录后,/etc/motd文件的内容就会显示在用户的终端。通过这个文件系统管理员可以发布一些软件或硬件的升级、系统维护等通告信息,但是此文件的最大作用就、是可以发布一些警告信息,当黑客登录系统后,会发现这些警告信息,进而产生一些震慑作用。看过国外的一个报道,黑客入侵了一个服务器,而这个服务器却给出了欢迎登录的信息,因此法院不做任何裁决。
远程访问和认证安全
1、远程登录取消telnet而采用SSH方式 telnet是一种古老的远程登录认证服务,它在网络上用明文传送口令和数据,因此别有用心的人就会非常容易截获这些口令和数据。而且,telnet服务程序的安全验证方式也极其脆弱,攻击者可以轻松将虚假信息传送给服务器。现在远程登录基本抛弃了telnet这种方式,而取而代之的是通过SSH服务远程登录服务器。
2、合理使用Shell历史命令记录功能 在Linux下可通过history命令查看用户所有的历史操作记录,同时shell命令操作记录默认保存在用户目录下的.bash_history文件中,通过这个文件可以查询shell命令的执行历史,有助于运维人员进行系统审计和问题排查,同时,在服务器遭受黑客攻击后,也可以通过这个命令或文件查询黑客登录服务器所执行的历史命令操作,但是有时候黑客在入侵服务器后为了毁灭痕迹,可能会删除.bash_history文件,这就需要合理的保护或备份.bash_history文件。
3、启用tcp_wrappers防火墙Tcp_Wrappers是一个用来分析TCP/IP封包的软件,类似的IP封包软件还有iptables。Linux默认都安装了Tcp_Wrappers。作为一个安全的系统,Linux本身有两层安全防火墙,通过IP过滤机制的iptables实现第一层防护。iptables防火墙通过直观地监视系统的运行状况,阻挡网络中的一些恶意攻击,保护整个系统正常运行,免遭攻击和破坏。如果通过了第一层防护,那么下一层防护就是tcp_wrappers了。通过Tcp_Wrappers可以实现对系统中提供的某些服务的开放与关闭、允许和禁止,从而更有效地保证系统安全运行。
文件系统安全
1、锁定系统重要文件系统运维人员有时候可能会遇到通过root用户都不能修改或者删除某个文件的情况,产生这种情况的大部分原因可能是这个文件被锁定了。在Linux下锁定文件的命令是chattr,通过这个命令可以修改ext2、ext3、ext4文件系统下文件属性,但是这个命令必须有超级用户root来执行。和这个命令对应的命令是lsattr,这个命令用来查询文件属性。对重要的文件进行加锁,虽然能够提高服务器的安全性,但是也会带来一些不便。例如:在软件的安装、升级时可能需要去掉有关目录和文件的immutable属性和append-only属性,同时,对日志文件设置了append-only属性,可能会使日志轮换(logrotate)无法进行。因此,在使用chattr命令前,需要结合服务器的应用环境来权衡是否需要设置immutable属性和append-only属性。另外,虽然通过chattr命令修改文件属性能够提高文件系统的安全性,但是它并不适合所有的目录。chattr命令不能保护/、/dev、/tmp、/var等目录。根目录不能有不可修改属性,因为如果根目录具有不可修改属性,那么系统根本无法工作:/dev在启动时,syslog需要删除并重新建立/dev/log套接字设备,如果设置了不可修改属性,那么可能出问题;/tmp目录会有很多应用程序和系统程序需要在这个目录下建立临时文件,也不能设置不可修改属性;/var是系统和程序的日志目录,如果设置为不可修改属性,那么系统写日志将无法进行,所以也不能通过chattr命令保护。
2、文件权限检查和修改不正确的权限设置直接威胁着系统的安全,因此运维人员应该能及时发现这些不正确的权限设置,并立刻修正,防患于未然。下面列举几种查找系统不安全权限的方法。
(1)查找系统中任何用户都有写权限的文件或目录
查找文件:find / -type f -perm -2 -o -perm -20 |xargs ls -al查找目录:find / -type d -perm -2 -o -perm -20 |xargs ls –ld
(2)查找系统中所有含“s”位的程序
find / -type f -perm -4000 -o -perm -2000 -print | xargs ls –al
含有“s”位权限的程序对系统安全威胁很大,通过查找系统中所有具有“s”位权限的程序,可以把某些不必要的“s”位程序去掉,这样可以防止用户滥用权限或提升权限的可能性。
(3)检查系统中所有suid及sgid文件
find / -user root -perm -2000 -print -exec md5sum {} \;find / -user root -perm -4000 -print -exec md5sum {} \;
将检查的结果保存到文件中,可在以后的系统检查中作为参考。
(4)检查系统中没有属主的文件
find / -nouser -o –nogroup
没有属主的孤儿文件比较危险,往往成为黑客利用的工具,因此找到这些文件后,要么删除掉,要么修改文件的属主,使其处于安全状态。
3、/tmp、/var/tmp、/dev/shm安全设定在Linux系统中,主要有两个目录或分区用来存放临时文件,分别是/tmp和/var/tmp。存储临时文件的目录或分区有个共同点就是所有用户可读写、可执行,这就为系统留下了安全隐患。攻击者可以将病毒或者木马脚本放到临时文件的目录下进行信息收集或伪装,严重影响服务器的安全,此时,如果修改临时目录的读写执行权限,还有可能影响系统上应用程序的正常运行,因此,如果要兼顾两者,就需要对这两个目录或分区就行特殊的设置。/dev/shm是Linux下的一个共享内存设备,在Linux启动的时候系统默认会加载/dev/shm,被加载的/dev/shm使用的是tmpfs文件系统,而tmpfs是一个内存文件系统,存储到tmpfs文件系统的数据会完全驻留在RAM中,这样通过/dev/shm就可以直接操控系统内存,这将非常危险,因此如何保证/dev/shm安全也至关重要。对于/tmp的安全设置,需要看/tmp是一个独立磁盘分区,还是一个根分区下的文件夹,如果/tmp是一个独立的磁盘分区,那么设置非常简单,修改/etc/fstab文件中/tmp分区对应的挂载属性,加上nosuid、noexec、nodev三个选项即可,修改后的/tmp分区挂载属性类似如下:LABEL=/tmp /tmp ext3 rw,nosuid,noexec,nodev 0 0 其中,nosuid、noexec、nodev选项,表示不允许任何suid程序,并且在这个分区不能执行任何脚本等程序,并且不存在设备文件。在挂载属性设置完成后,重新挂载/tmp分区,保证设置生效。对于/var/tmp,如果是独立分区,安装/tmp的设置方法是修改/etc/fstab文件即可;如果是/var分区下的一个目录,那么可以将/var/tmp目录下所有数据移动到/tmp分区下,然后在/var下做一个指向/tmp的软连接即可。也就是执行如下操作:
[root@server ~]# mv /var/tmp/* /tmp[root@server ~]# ln -s /tmp /var/tmp
如果/tmp是根目录下的一个目录,那么设置稍微复杂,可以通过创建一个loopback文件系统来利用Linux内核的loopback特性将文件系统挂载到/tmp下,然后在挂载时指定限制加载选项即可。一个简单的操作示例如下:
[root@server ~]# dd if=/dev/zero of=/dev/tmpfs bs=1M count=10000[root@server ~]# mke2fs -j /dev/tmpfs[root@server ~]# cp -av /tmp /tmp.old[root@server ~]# mount -o loop,noexec,nosuid,rw /dev/tmpfs /tmp[root@server ~]# chmod 1777 /tmp[root@server ~]# mv -f /tmp.old/* /tmp/[root@server ~]# rm -rf /tmp.old
最后,编辑/etc/fstab,添加如下内容,以便系统在启动时自动加载loopback文件系统:
/dev/tmpfs /tmp ext3 loop,nosuid,noexec,rw 0 0
Linux后门入侵检测工具rootkit是Linux平台下最常见的一种木马后门工具,它主要通过替换系统文件来达到入侵和和隐蔽的目的,这种木马比普通木马后门更加危险和隐蔽,普通的检测工具和检查手段很难发现这种木马。rootkit攻击能力极强,对系统的危害很大,它通过一套工具来建立后门和隐藏行迹,从而让攻击者保住权限,以使它在任何时候都可以使用root权限登录到系统。rootkit主要有两种类型:文件级别和内核级别,下面分别进行简单介绍。文件级别的rootkit一般是通过程序漏洞或者系统漏洞进入系统后,通过修改系统的重要文件来达到隐藏自己的目的。在系统遭受rootkit攻击后,合法的文件被木马程序替代,变成了外壳程序,而其内部是隐藏着的后门程序。通常容易被rootkit替换的系统程序有login、ls、ps、ifconfig、、find、netstat等,其中login程序是最经常被替换的,因为当访问Linux时,无论是通过本地登录还是远程登录,/bin/login程序都会运行,系统将通过/bin/login来收集并核对用户的账号和密码,而rootkit就是利用这个程序的特点,使用一个带有根权限后门密码的/bin/login来替换系统的/bin/login,这样攻击者通过输入设定好的密码就能轻松进入系统。此时,即使系统管理员修改root密码或者清除root密码,攻击者还是一样能通过root用户登录系统。攻击者通常在进入Linux系统后,会进行一系列的攻击动作,最常见的是安装嗅探器收集本机或者网络中其他服务器的重要数据。在默认情况下,Linux中也有一些系统文件会监控这些工具动作,例如ifconfig命令,所以,攻击者为了避免被发现,会想方设法替换其他系统文件,常见的就是ls、ps、ifconfig、、find、netstat等。如果这些文件都被替换,那么在系统层面就很难发现rootkit已经在系统中运行了。这就是文件级别的rootkit,对系统维护很大,目前最有效的防御方法是定期对系统重要文件的完整性进行检查,如果发现文件被修改或者被替换,那么很可能系统已经遭受了rootkit入侵。检查件完整性的工具很多,常见的有Tripwire、 aide等,可以通过这些工具定期检查文件系统的完整性,以检测系统是否被rootkit入侵。内核级rootkit是比文件级rootkit更高级的一种入侵方式,它可以使攻击者获得对系统底层的完全控制权,此时攻击者可以修改系统内核,进而截获运行程序向内核提交的命令,并将其重定向到入侵者所选择的程序并运行此程序,也就是说,当用户要运行程序A时,被入侵者修改过的内核会假装执行A程序,而实际上却执行了程序B。内核级rootkit主要依附在内核上,它并不对系统文件做任何修改,因此一般的检测工具很难检测到它的存在,这样一旦系统内核被植入rootkit,攻击者就可以对系统为所欲为而不被发现。目前对于内核级的rootkit还没有很好的防御工具,因此,做好系统安全防范就非常重要,将系统维持在最小权限内工作,只要攻击者不能获取root权限,就无法在内核中植入rootkit。
1、rootkit后门检测工具chkrootkit chkrootkit是一个Linux系统下查找并检测rootkit后门的工具,它的官方址:http://www.chkrootkit.org/。 chkrootkit没有包含在官方的CentOS源中,因此要采取手动编译的方法来安装,不过这种安装方法也更加安全。chkrootkit的使用比较简单,直接执行chkrootkit命令即可自动开始检测系统。下面是某个系统的检测结果:
[root@server chkrootkit]# /usr/local/chkrootkit/chkrootkitChecking `ifconfig’… INFECTEDChecking `ls’… INFECTEDChecking `login’… INFECTEDChecking `netstat’… INFECTEDChecking `ps’… INFECTEDChecking `top’… INFECTEDChecking `sshd’… not infectedChecking `syslogd’… not tested
从输出可以看出,此系统的ifconfig、ls、login、netstat、ps和top命令已经被感染。针对被感染rootkit的系统,最安全而有效的方法就是备份数据重新安装系统。chkrootkit在检查rootkit的过程中使用了部分系统命令,因此,如果服务器被黑客入侵,那么依赖的系统命令可能也已经被入侵者替换,此时chkrootkit的检测结果将变得完全不可信。为了避免chkrootkit的这个问题,可以在服务器对外开放前,事先将chkrootkit使用的系统命令进行备份,在需要的时候使用备份的原始系统命令让chkrootkit对rootkit进行检测。
2、rootkit后门检测工具RKHunter RKHunter是一款专业的检测系统是否感染rootkit的工具,它通过执行一系列的脚本来确认服务器是否已经感染rootkit。在官方的资料中,RKHunter可以作的事情有:MD5校验测试,检测文件是否有改动
检测rootkit使用的二进制和系统工具文件 检测特洛伊木马程序的特征码 检测常用程序的文件属性是否异常 检测系统相关的测试 检测隐藏文件 检测可疑的核心模块LKM 检测系统已启动的监听端口
在Linux终端使用rkhunter来检测,最大的好处在于每项的检测结果都有不同的颜色显示,如果是绿色的表示没有问题,如果是红色的,那就要引起关注了。另外,在执行检测的过程中,在每个部分检测完成后,需要以Enter键来继续。如果要让程序自动运行,可以执行如下命令:
[root@server ~]# /usr/local/bin/rkhunter –check –skip-keypress
同时,如果想让检测程序每天定时运行,那么可以在/etc/crontab中加入如下内容:
30 09 * * * root /usr/local/bin/rkhunter –check –cronjob
这样,rkhunter检测程序就会在每天的9:30分运行一次。服务器遭受攻击后的处理过程安全总是相对的,再安全的服务器也有可能遭受到攻击。作为一个安全运维人员,要把握的原则是:尽量做好系统安全防护,修复所有已知的危险行为,同时,在系统遭受攻击后能够迅速有效地处理攻击行为,最大限度地降低攻击对系统产生的影响。
B. linux服务器tcp连接数过大怎么办
不管是什么系统的服务器,客户连接到服务器的最明显的看出来就是TCP的显示。
一般分为两种情况:
1.CC攻击的表现情况
CC攻击会造成访问量增大,带宽图上的代表TCP访问量(红色)会忽然不正常的增高。CPU的占用量增大,然后造成打开慢或者卡死的情况。
所以看到如果是TCP,突然增大的话,证明你的服务器在遭受CC攻击,可以联系服务器商,让机房做下防御策略。
2.如果TCP的连接量一直在一个区域一直很大的话,那检查服务器的资源,可能无法支撑访问量,需要更大的资源,更高的配置支持。
C. 如何防御针对Linux服务器的攻击
引:随着Linux企业应用的扩展,有大量的网络服务器使用Linux操作系统。Linux服务器的安全性能受到越来越多的关注,这里根据Linux服务器受到攻击的深度以级别形式列出,并提出不同的解决方案。
随着Linux企业应用的扩展,有大量的网络服务器使用Linux操作系统。Linux服务器的安全性能受到越来越多的关注,这里根据Linux服务器受到攻击的深度以级别形式列出,并提出不同的解决方案。
对Linux服务器攻击的定义是:攻击是一种旨在妨碍、损害、削弱、破坏Linux服务器安全的未授权行为。攻击的范围可以从服务拒绝直至完全危害和破坏Linux服务器。对Linux服务器攻击有许多种类,本文从攻击深度的角度说明,我们把攻击分为四级。
攻击级别一:服务拒绝攻击(DoS)
由于DoS攻击工具的泛滥,及所针对的协议层的缺陷短时无法改变的事实,DoS也就成为了流传最广、最难防范的攻击方式。
服务拒绝攻击包括分布式拒绝服务攻击、反射式分布拒绝服务攻击、DNS分布拒绝服务攻击、FTP攻击等。大多数服务拒绝攻击导致相对低级的危险,即便是那些可能导致系统重启的攻击也仅仅是暂时性的问题。这类攻击在很大程度上不同于那些想获取网络控制的攻击,一般不会对数据安全有影响,但是服务拒绝攻击会持续很长一段时间,非常难缠。
到目前为止,没有一个绝对的方法可以制止这类攻击。但这并不表明我们就应束手就擒,除了强调个人主机加强保护不被利用的重要性外,加强对服务器的管理是非常重要的一环。一定要安装验证软件和过滤功能,检验该报文的源地址的真实地址。另外对于几种服务拒绝可以采用以下措施:关闭不必要的服务、限制同时打开的Syn半连接数目、缩短Syn半连接的time out 时间、及时更新系统补丁。
攻击级别二:本地用户获取了他们非授权的文件的读写权限
本地用户是指在本地网络的任一台机器上有口令、因而在某一驱动器上有一个目录的用户。本地用户获取到了他们非授权的文件的读写权限的问题是否构成危险很大程度上要看被访问文件的关键性。任何本地用户随意访问临时文件目录(/tmp)都具有危险性,它能够潜在地铺设一条通向下一级别攻击的路径。
级别二的主要攻击方法是:黑客诱骗合法用户告知其机密信息或执行任务,有时黑客会假装网络管理人员向用户发送邮件,要求用户给他系统升级的密码。
由本地用户启动的攻击几乎都是从远程登录开始。对于Linux服务器,最好的办法是将所有shell账号放置于一个单独的机器上,也就是说,只在一台或多台分配有shell访问的服务器上接受注册。这可以使日志管理、访问控制管理、释放协议和其他潜在的安全问题管理更容易些。还应该将存放用户cgI的系统区分出来。这些机器应该隔离在特定的网络区段,也就是说,根据网络的配置情况,它们应该被路由器或网络交换机包围。其拓扑结构应该确保硬件地址欺骗也不能超出这个区段。
攻击级别三:远程用户获得特权文件的读写权限
第三级别的攻击能做到的不只是核实特定文件是否存在,而且还能读写这些文件。造成这种情况的原因是:Linux服务器配置中出现这样一些弱点:即远程用户无需有效账号就可以在服务器上执行有限数量的命令。
密码攻击法是第三级别中的主要攻击法,损坏密码是最常见的攻击方法。密码破解是用以描述在使用或不使用工具的情况下渗透网络、系统或资源以解锁用密码保护的资源的一个术语。用户常常忽略他们的密码,密码政策很难得到实施。黑客有多种工具可以击败技术和社会所保护的密码。主要包括:字典攻击(Dictionary attack)、混合攻击(Hybrid attack)、蛮力攻击(Brute force attack)。一旦黑客拥有了用户的密码,他就有很多用户的特权。密码猜想是指手工进入普通密码或通过编好程序的正本取得密码。一些用户选择简单的密码—如生日、纪念日和配偶名字,却并不遵循应使用字母、数字混合使用的规则。对黑客来说要猜出一串8个字生日数据不用花多长时间。
防范第三级别的攻击的最好的防卫方法便是严格控制进入特权,即使用有效的密码。
◆ 主要包括密码应当遵循字母、数字、大小写(因为Linux对大小写是有区分)混合使用的规则。
◆ 使用象“#”或“%”或“"countbak"一词,它后面添加“##”
攻击级别四:远程用户获得根权限
第四攻击级别是指那些决不应该发生的事发生了,这是致命的攻击。表示攻击者拥有Linux服务器的根、超级用户或管理员许可权,可以读、写并执行所有文件。换句话说,攻击者具有对Linux服务器的全部控制权,可以在任何时刻都能够完全关闭甚至毁灭此网络。
攻击级别四主要攻击形式是TCP/IP连续偷窃,被动通道听取和信息包拦截。TCP/IP连续偷窃,被动通道听取和信息包拦截,是为进入网络收集重要信息的方法,不像拒绝服务攻击,这些方法有更多类似偷窃的性质,比较隐蔽不易被发现。一次成功的TCP/IP攻击能让黑客阻拦两个团体之间的交易,提供中间人袭击的良好机会,然后黑客会在不被受害者注意的情况下控制一方或双方的交易。通过被动窃听,黑客会操纵和登记信息,把文件送达,也会从目标系统上所有可通过的通道找到可通过的致命要害。黑客会寻找联机和密码的结合点,认出申请合法的通道。信息包拦截是指在目标系统约束一个活跃的听者程序以拦截和更改所有的或特别的信息的地址。信息可被改送到非法系统阅读,然后不加改变地送回给黑客。
TCP/IP连续偷窃实际就是网络嗅探,注意如果您确信有人接了嗅探器到自己的网络上,可以去找一些进行验证的工具。这种工具称为时域反射计量器(Time Domain Reflectometer,TDR)。TDR对电磁波的传播和变化进行测量。将一个TDR连接到网络上,能够检测到未授权的获取网络数据的设备。不过很多中小公司没有这种价格昂贵的工具。
对于防范嗅探器的攻击最好的方法是:
1、安全的拓扑结构。嗅探器只能在当前网络段上进行数据捕获。这就意味着,将网络分段工作进行得越细,嗅探器能够收集的信息就越少。
2、会话加密。不用特别地担心数据被嗅探,而是要想办法使得嗅探器不认识嗅探到的数据。这种方法的优点是明显的:即使攻击者嗅探到了数据,这些数据对他也是没有用的。
特别提示:应对攻击的反击措施
对于超过第二级别的攻击您就要特别注意了。因为它们可以不断的提升攻击级别,以渗透Linux服务器。此时,我们可以采取的反击措施有:
◆ 首先备份重要的企业关键数据。
◆ 改变系统中所有口令,通知用户找系统管理员得到新口令。
◆ 隔离该网络网段使攻击行为仅出现在一个小范围内。
◆ 允许行为继续进行。如有可能,不要急于把攻击者赶出系统,为下一步作准备。
◆ 记录所有行为,收集证据。这些证据包括:系统登录文件、应用登录文件、AAA(Authentication、Authorization、 Accounting,认证、授权、计费)登录文件,RADIUS(Remote Authentication Dial-In User Service) 登录,网络单元登录(Network Element Logs)、防火墙登录、HIDS(Host-base IDS,基于主机的入侵检测系统) 事件、NIDS(网络入侵检测系统)事件、磁盘驱动器、隐含文件等。收集证据时要注意:在移动或拆卸任何设备之前都要拍照;在调查中要遵循两人法则,在信息收集中要至少有两个人,以防止篡改信息;应记录所采取的所有步骤以及对配置设置的任何改变,要把这些记录保存在安全的地方。检查系统所有目录的存取许可,检测Permslist是否被修改过。
◆ 进行各种尝试(使用网络的不同部分)以识别出攻击源。
◆ 为了使用法律武器打击犯罪行为,必须保留证据,而形成证据需要时间。为了做到这一点,必须忍受攻击的冲击(虽然可以制定一些安全措施来确保攻击不损害网络)。对此情形,我们不但要采取一些法律手段,而且还要至少请一家有权威的安全公司协助阻止这种犯罪。这类操作的最重要特点就是取得犯罪的证据、并查找犯罪者的地址,提供所拥有的日志。对于所搜集到的证据,应进行有效地保存。在开始时制作两份,一个用于评估证据,另一个用于法律验证。
◆ 找到系统漏洞后设法堵住漏洞,并进行自我攻击测试。
网络安全已经不仅仅是技术问题,而是一个社会问题。企业应当提高对网络安全重视,如果一味地只依靠技术工具,那就会越来越被动;只有发挥社会和法律方面打击网络犯罪,才能更加有效。我国对于打击网络犯罪已经有了明确的司法解释,遗憾的是大多数企业只重视技术环节的作用而忽略法律、社会因素,这也是本文的写作目的。
D. 求基于TCP/IP协议的常见攻击方法及其原理
SYN洪水攻击 原理
SYN攻击
本文介绍了4个概念
一:介绍SYN
二:什么是SYN洪水攻击
三:什么是SYN cookie
四:什么是SYN cookie防火墙
C=client(客户器)
S=Server(服务器)
FW=Firewall(防火墙)
一:介绍SYN
SYN cookie是一个防止SYN洪水攻击技术。他由D. J. Bernstein和Eric Schenk发明。现在SYN COOKIE已经是linux内核的一部分了(我插一句
,默认的stat是no),但是在linux系统的执行过程中它只保护linux系统。我们这里只是说创建一个linux防火墙,他可以为整个网络和所有的网
络操作系统提供SYN COOKIE保护你可以用这个防火墙来阻断半开放式tcp连接,所以这个受保护的系统不会进入半开放状态(TCP_SYN_RECV)。当
连接完全建立的时候,客户机到服务器的连接要通过防火墙来中转完成。
二:什么是SYN洪水攻击?(来自CERT的警告)
当一个系统(我们叫他客户端)尝试和一个提供了服务的系统(服务器)建立TCP连接,C和服务端会交换一系列报文。
这种连接技术广泛的应用在各种TCP连接中,例如telnet,Web,email,等等。
首先是C发送一个SYN报文给服务端,然后这个服务端发送一个SYN-ACK包以回应C,接着,C就返回一个ACK包来实现一次完
整的TCP连接。就这样,C到服务端的连接就建立了,这时C和服务端就可以互相交换数据了。下面是上文的图片说明:)
Client Server
------ ------
SYN-------------------->
<--------------------SYN-ACK
ACK-------------------->
Client and server can now
send service-specific data
在S返回一个确认的SYN-ACK包的时候有个潜在的弊端,他可能不会接到C回应的ACK包。这个也就是所谓的半开放连接,S需要
耗费一定的数量的系统内存来等待这个未决的连接,虽然这个数量是受限的,但是恶意者可以通过创建很多的半开放式连接来发动SYN洪水攻击 。
通过ip欺骗可以很容易的实现半开放连接。攻击者发送SYN包给受害者系统,这个看起来是合法的,但事实上所谓的C根本不会回应这个 。
SYN-ACK报文,这意味着受害者将永远不会接到ACK报文。
而此时,半开放连接将最终耗用受害者所有的系统资源,受害者将不能再接收任何其他的请求。通常等待ACK返回包有超时限制,所以半开放 。
连接将最终超时,而受害者系统也会自动修复。虽然这样,但是在受害者系统修复之前,攻击者可以很容易的一直发送虚假的SYN请求包来持续
攻击。
在大多数情况下,受害者几乎不能接受任何其他的请求,但是这种攻击不会影响到已经存在的进站或者是出站连接。虽然这样,受害者系统
还是可能耗尽系统资源,以导致其他种种问题。
攻击系统的位置几乎是不可确认的,因为SYN包中的源地址多数都是虚假的。当SYN包到达受害者系统的时候,没有办法找到他的真实地址
,因为在基于源地址的数据包传输中,源ip过滤是唯一可以验证数据包源的方法。
三:什么是SYN cookie?
SYN cookie就是用一个cookie来响应TCP SYN请求的TCP实现,根据上面的描述,在正常的TCP实现中,当S接收到一个SYN数据包,他返回
一个SYN-ACK包来应答,然后进入TCP-SYN-RECV(半开放连接)状态来等待最后返回的ACK包。S用一个数据空间来描述所有未决的连接,
然而这个数据空间的大小是有限的,所以攻击者将塞满这个空间。
在TCP SYN COOKIE的执行过程中,当S接收到一个SYN包的时候,他返回一个SYN-ACK包,这个数据包的ACK序列号是经过加密的,也就
是说,它由源地址,端口源次序,目标地址,目标端口和一个加密种子计算得出。然后S释放所有的状态。如果一个ACK包从C返回,
S将重新计算它来判断它是不是上个SYN-ACK的返回包。如果这样,S就可以直接进入TCP连接状态并打开连接。这样,S就可以
避免守侯半开放连接了。
以上只是SYN COOKIE的基本思路,它在应用过程中仍然有许多技巧。请在前几年的kernel邮件列表查看archive of discussions的相关详细
内容。
4,什么是SYN COOKIE 防火墙
SYN COOKIE 防火墙是SYN cookie的一个扩展,SYN cookie是建立在TCP堆栈上的,他为linux操作系统提供保护。SYN cookie防火墙是linux的
一大特色,你可以使用一个防火墙来保护你的网络以避免遭受SYN洪水攻击。
下面是SYN cookie防火墙的原理
client firewall server
------ ---------- ------
1. SYN----------- - - - - - - - - - ->
2. <------------SYN-ACK(cookie)
3. ACK----------- - - - - - - - - - ->
4. - - - - - - -SYN--------------->
5. <- - - - - - - - - ------------SYN-ACK
6. - - - - - - -ACK--------------->
7. -----------> relay the ------->
<----------- connection <-------
1:一个SYN包从C发送到S
2:防火墙在这里扮演了S的角色来回应一个带SYN cookie的SYN-ACK包给C
3:C发送ACK包,接着防火墙和C的连接就建立了。
4:防火墙这个时候扮演C的角色发送一个SYN给S
5:S返回一个SYN给C
6:防火墙扮演C发送一个ACK确认包给S,这个时候防火墙和S的连接也就建立了
7:防火墙转发C和S间的数据
如果系统遭受SYN Flood,那么第三步就不会有,而且无论在防火墙还是S都不会收到相应在第一步的SYN包,所以我们就击退了这次SYN洪水攻 击。
E. 如何监控linux服务器的tcp连接
linux下监控软件有很多啊 一般常用的是以下三种 mrtg----》》》 监控流量,cup负载,tcp连接数,磁盘空间等等 一般用来做流量监控,配置简单 nagios--->>>> 用来监控主机与服务存活状态,也可以监控负载与磁盘空间等等,带邮件 与短信告警,配置稍微复杂点。 cacti----》》》强大的绘图功能,十分漂亮,插件无数,可监控几乎所有内容,缺点是安装配置复杂,但现在有一键安装盘,方便的很。 另外还有一个在国外用的很多的监控软件:zabbix 这个也是非常强大的,没装过,你可以试试。
F. linux服务器感觉被攻击了,求高手解决
1、127.0.0.1是本机ip
2、可以用tcpmp -nn -i eth0检查相应网卡发包
3、检查httpd日志
4、检查/var/log/secure
5、netstat -ntlp检查端口及对应进程,关闭没用的端口
6、cat /etc/passwd 关闭没有用的账户
7、ps -ef检查所有进程,普通用户如果弱密码也可以被执行蠕虫脚本,不断发包用尽带宽。
G. 雷网主机Linux服务器被入侵时的处理办法有哪些
随着Linux企业应用的扩展,有大量的网络服务器使用Linux操作系统。Linux服务器的安全性能受到越来越多的关注,这里根据Linux服务器受到攻击的深度以级别形式列出,并提出不同的解决方案。 对Linux服务器攻击的定义是:攻击是一种旨在妨碍、损害、削弱、破坏Linux服务器安全的未授权行为。攻击的范围可以从服务拒绝直至完全危害和破坏Linux服务器。对Linux服务器攻击有许多种类,本文从攻击深度的角度说明,我们把攻击分为四级。
攻击级别一:服务拒绝攻击(DoS)
由于DoS攻击工具的泛滥,及所针对的协议层的缺陷短时无法改变的事实,DoS也就成为了流传最广、最难防范的攻击方式。
服务拒绝攻击包括分布式拒绝服务攻击、反射式分布拒绝服务攻击、DNS分布拒绝服务攻击、FTP攻击等。大多数服务拒绝攻击导致相对低级的危险,即便是那些可能导致系统重启的攻击也仅仅是暂时性的问题。这类攻击在很大程度上不同于那些想获取网络控制的攻击,一般不会对数据安全有影响,但是服务拒绝攻击会持续很长一段时间,非常难缠。
到目前为止,没有一个绝对的方法可以制止这类攻击。但这并不表明我们就应束手就擒,除了强调个人主机加强保护不被利用的重要性外,加强对服务器的管理是非常重要的一环。一定要安装验证软件和过滤功能,检验该报文的源地址的真实地址。另外对于几种服务拒绝可以采用以下措施:关闭不必要的服务、限制同时打开的Syn半连接数目、缩短Syn半连接的time out 时间、及时更新系统补丁。
攻击级别二:本地用户获取了他们非授权的文件的读写权限
本地用户是指在本地网络的任一台机器上有口令、因而在某一驱动器上有一个目录的用户。本地用户获取到了他们非授权的文件的读写权限的问题是否构成危险很大程度上要看被访问文件的关键性。任何本地用户随意访问临时文件目录(/tmp)都具有危险性,它能够潜在地铺设一条通向下一级别攻击的路径。
级别二的主要攻击方法是:黑客诱骗合法用户告知其机密信息或执行任务,有时黑客会假装网络管理人员向用户发送邮件,要求用户给他系统升级的密码。
由本地用户启动的攻击几乎都是从远程登录开始。对于Linux服务器,最好的办法是将所有shell账号放置于一个单独的机器上,也就是说,只在一台或多台分配有shell访问的服务器上接受注册。这可以使日志管理、访问控制管理、释放协议和其他潜在的安全问题管理更容易些。还应该将存放用户CGI的系统区分出来。这些机器应该隔离在特定的网络区段,也就是说,根据网络的配置情况,它们应该被路由器或网络交换机包围。其拓扑结构应该确保硬件地址欺骗也不能超出这个区段。
攻击级别三:远程用户获得特权文件的读写权限
第三级别的攻击能做到的不只是核实特定文件是否存在,而且还能读写这些文件。造成这种情况的原因是:Linux服务器配置中出现这样一些弱点:即远程用户无需有效账号就可以在服务器上执行有限数量的命令。
密码攻击法是第三级别中的主要攻击法,损坏密码是最常见的攻击方法。密码破解是用以描述在使用或不使用工具的情况下渗透网络、系统或资源以解锁用密码保护的资源的一个术语。用户常常忽略他们的密码,密码政策很难得到实施。黑客有多种工具可以击败技术和社会所保护的密码。主要包括:字典攻击(Dictionary attack)、混合攻击(Hybrid attack)、蛮力攻击(Brute force attack)。一旦黑客拥有了用户的密码,他就有很多用户的特权。密码猜想是指手工进入普通密码或通过编好程序的正本取得密码。一些用户选择简单的密码-如生日、纪念日和配偶名字,却并不遵循应使用字母、数字混合使用的规则。对黑客来说要猜出一串8个字生日数据不用花多长时间。
防范第三级别的攻击的最好的防卫方法便是严格控制进入特权,即使用有效的密码。 主要包括密码应当遵循字母、数字、大小写(因为Linux对大小写是有区分)混合使用的规则。 使用象"#"或"%"或"$"这样的特殊字符也会添加复杂性。例如采用"countbak"一词,在它后面添加"#$"(countbak#$),这样您就拥有了一个相当有效的密码。
攻击级别四:远程用户获得根权限
第四攻击级别是指那些决不应该发生的事发生了,这是致命的攻击。表示攻击者拥有Linux服务器的根、超级用户或管理员许可权,可以读、写并执行所有文件。换句话说,攻击者具有对Linux服务器的全部控制权,可以在任何时刻都能够完全关闭甚至毁灭此网络。
攻击级别四主要攻击形式是TCP/IP连续偷窃,被动通道听取和信息包拦截。TCP/IP连续偷窃,被动通道听取和信息包拦截,是为进入网络收集重要信息的方法,不像拒绝服务攻击,这些方法有更多类似偷窃的性质,比较隐蔽不易被发现。一次成功的TCP/IP攻击能让黑客阻拦两个团体之间的交易,提供中间人袭击的良好机会,然后黑客会在不被受害者注意的情况下控制一方或双方的交易。通过被动窃听,黑客会操纵和登记信息,把文件送达,也会从目标系统上所有可通过的通道找到可通过的致命要害。黑客会寻找联机和密码的结合点,认出申请合法的通道。信息包拦截是指在目标系统约束一个活跃的听者程序以拦截和更改所有的或特别的信息的地址。信息可被改送到非法系统阅读,然后不加改变地送回给黑客。
TCP/IP连续偷窃实际就是网络嗅探,注意如果您确信有人接了嗅探器到自己的网络上,可以去找一些进行验证的工具。这种工具称为时域反射计量器(Time Domain Reflectometer,TDR)。TDR对电磁波的传播和变化进行测量。将一个TDR连接到网络上,能够检测到未授权的获取网络数据的设备。不过很多中小公司没有这种价格昂贵的工具。对于防范嗅探器的攻击最好的方法是:
1、安全的拓扑结构。嗅探器只能在当前网络段上进行数据捕获。这就意味着,将网络分段工作进行得越细,嗅探器能够收集的信息就越少。
2、会话加密。不用特别地担心数据被嗅探,而是要想办法使得嗅探器不认识嗅探到的数据。这种方法的优点是明显的:即使攻击者嗅探到了数据,这些数据对他也是没有用的。
特别提示:应对攻击的反击措施
对于超过第二级别的攻击您就要特别注意了。因为它们可以不断的提升攻击级别,以渗透Linux服务器。此时,我们可以采取的反击措施有: 首先备份重要的企业关键数据。 改变系统中所有口令,通知用户找系统管理员得到新口令。 隔离该网络网段使攻击行为仅出现在一个小范围内。 允许行为继续进行。如有可能,不要急于把攻击者赶出系统,为下一步作准备。
记录所有行为,收集证据。这些证据包括:系统登录文件、应用登录文件、AAA(Authentication、Authorization、 Accounting,认证、授权、计费)登录文件,RADIUS(Remote Authentication
Dial-In User Service) 登录,网络单元登录(Network Element Logs)、防火墙登录、HIDS(Host-base IDS,基于主机的入侵检测系统) 事件、NIDS(网络入侵检测系统)事件、磁盘驱动器、隐含文件等。收集证据时要注意:在移动或拆卸任何设备之前都要拍照;在调查中要遵循两人法则,在信息收集中要至少有两个人,以防止篡改信息;应记录所采取的所有步骤以及对配置设置的任何改变,要把这些记录保存在安全的地方。检查系统所有目录的存取许可,检测Permslist是否被修改过。
进行各种尝试(使用网络的不同部分)以识别出攻击源。
为了使用法律武器打击犯罪行为,必须保留证据,而形成证据需要时间。为了做到这一点,必须忍受攻击的冲击(虽然可以制定一些安全措施来确保攻击不损害网络)。对此情形,我们不但要采取一些法律手段,而且还要至少请一家有权威的安全公司协助阻止这种犯罪。这类操作的最重要特点就是取得犯罪的证据、并查找犯罪者的地址,提供所拥有的日志。对于所搜集到的证据,应进行有效地保存。在开始时制作两份,一个用于评估证据,另一个用于法律验证。
找到系统漏洞后设法堵住漏洞,并进行自我攻击测试。
网络安全已经不仅仅是技术问题,而是一个社会问题。企业应当提高对网络安全重视,如果一味地只依靠技术工具,那就会越来越被动;只有发挥社会和法律方面打击网络犯罪,才能更加有效。我国对于打击网络犯罪已经有了明确的司法解释,遗憾的是大多数企业只重视技术环节的作用而忽略法律、社会因素,这也是本文的写作目的。
拒绝服务攻击(DoS)
DoS即Denial Of Service,拒绝服务的缩写,可不能认为是微软的DOS操作系统!DoS攻击即让目标机器停止提供服务或资源访问,通常是以消耗服务器端资源为目标,通过伪造超过服务器处理能力的请求数据造成服务器响应阻塞,使正常的用户请求得不到应答,以实现攻击目的。
H. Linux系统如何抵御TCP洪水攻击
#最关键参数,默认为5,修改为0 表示不要重发
net.ipv4.tcp_synack_retries = 0
#半连接队列长度
net.ipv4.tcp_max_syn_backlog = 200000
#系统允许的文件句柄的最大数目,因为连接需要占用文件句柄
fs.file-max = 819200
#用来应对突发的大并发connect 请求
net.core.somaxconn = 65536
#最大的TCP 数据接收缓冲(字节)
net.core.rmem_max = 1024123000
#最大的TCP 数据发送缓冲(字节)
net.core.wmem_max = 16777216
#网络设备接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目
net.core.netdev_max_backlog = 165536
#本机主动连接其他机器时的端口分配范围
net.ipv4.ip_local_port_range = 10000 65535
为了处理大量连接,还需改大另一个参数:
# vi /etc/security/limits.conf
在底下添加一行表示允许每个用户都最大可打开409600个文件句柄(包括连接):
* – nofile 409600
I. 求教:黑客一般都是怎么攻击各种端口
黑客常用端口(实际上每个端口黑客都会想办法利用的)
端口:102
服务:Message transfer agent(MTA)-X.400 over TCP/IP
说明:消息传输代理。
端口:113
服务:Authentication Service
说明:这是一个许多计算机上运行的协议,用于鉴别TCP连接的用户。使用标准的这种服务可以获得许多计算机的信息。但是它可作为许多服务的记录器,尤其是FTP、POP、IMAP、SMTP和IRC等服务。通常如果有许多客户通过防火墙访问这些服务,将会看到许多这个端口的连接请求。记住,如果阻断这个端口客户端会感觉到在防火墙另一边与E-MAIL服务器的缓慢连接。许多防火墙支持TCP连接的阻断过程中发回RST。这将会停止缓慢的连接。
端口:119
服务:Network News Transfer Protocol
说明:NEWS新闻组传输协议,承载USENET通信。这个端口的连接通常是人们在寻找USENET服务器。多数ISP限制,只有他们的客户才能访问他们的新闻组服务器。打开新闻组服务器将允许发/读任何人的帖子,访问被限制的新闻组服务器,匿名发帖或发送SPAM。
端口:135
服务:Location Service
说明:Microsoft在这个端口运行DCE RPC end-point mapper为它的DCOM服务。这与UNIX
111端口的功能很相似。使用DCOM和RPC的服务利用计算机上的end-point
mapper注册它们的位置。远端客户连接到计算机时,它们查找end-point
mapper找到服务的位置。HACKER扫描计算机的这个端口是为了找到这个计算机上运行Exchange
Server吗?什么版本?还有些DOS攻击直接针对这个端口。
端口:137
说明:SQL Named Pipes encryption over other protocols name
lookup(其他协议名称查找上的SQL命名管道加密技术)和SQL RPC encryption over other protocols name
lookup(其他协议名称查找上的SQL RPC加密技术)和Wins NetBT name service(WINS NetBT名称服务)和Wins
Proxy都用这个端口。
端口:137、138、139
服务:NETBIOS Name Service
说明:其中137、138是UDP端口,当通过网上邻居传输文件时用这个端口。而139端口:通过这个端口进入的连接试图获得NetBIOS/SMB服务。这个协议被用于windows文件和打印机共享和SAMBA。还有WINS
Regisrtation也用它。
端口:143
服务:Interim Mail Access Protocol v2
说明:和POP3的安全问题一样,许多IMAP服务器存在有缓冲区溢出漏洞。记住:一种LINUX蠕虫(admv0rm)会通过这个端口繁殖,因此许多这个端口的扫描来自不知情的已经被感染的用户。当REDHAT在他们的LINUX发布版本中默认允许IMAP后,这些漏洞变的很流行。这一端口还被用于IMAP2,但并不流行。
端口:161
服务:SNMP (Simple Network Management Protocol) (简单网络管理协议)
说明:SNMP允许远程管理设备。所有配置和运行信息的储存在数据库中,通过SNMP可获得这些信息。许多管理员的错误配置将被暴露在Internet。Cackers将试图使用默认的密码public、private访问系统。他们可能会试验所有可能的组合。SNMP包可能会被错误的指向用户的网络。
端口:162
说明:SNMP Trap(SNMP陷阱)
端口:177
服务:X Display Manager Control Protocol
说明:许多入侵者通过它访问X-windows操作台,它同时需要打开6000端口。
端口:389
服务:LDAP、ILS
说明:轻型目录访问协议和NetMeeting Internet Locator Server共用这一端口。
端口:443
服务:Https
说明:网页浏览端口,能提供加密和通过安全端口传输的另一种HTTP。
端口:445
说明:Common Internet File System(CIFS)(公共Internet文件系统)
端口:456
服务:[NULL]
说明:木马HACKERS PARADISE开放此端口。
端口:464
说明:Kerberos kpasswd(v5)。另外TCP的464端口也是这个用途。
端口:500
说明:Internet Key Exchange(IKE)(Internet密钥交换)
端口:513
服务:Login,remote login
说明:是从使用cable modem或DSL登陆到子网中的UNIX计算机发出的广播。这些人为入侵者进入他们的系统提供了信息。
端口:544
服务:[NULL]
说明:kerberos kshell
端口:548
服务:Macintosh,File Services(AFP/IP)
说明:Macintosh,文件服务。
端口:553
服务:CORBA IIOP (UDP)
说明:使用cable modem、DSL或VLAN将会看到这个端口的广播。CORBA是一种面向对象的RPC系统。入侵者可以利用这些信息进入系统。
端口:555
服务:DSF
说明:木马PhAse1.0、Stealth Spy、IniKiller开放此端口。
端口:568
服务:Membership DPA
说明:成员资格 DPA。
端口:569
服务:Membership MSN
说明:成员资格 MSN。
端口:635
服务:mountd
说明:Linux的mountd
Bug。这是扫描的一个流行BUG。大多数对这个端口的扫描是基于UDP的,但是基于TCP的mountd有所增加(mountd同时运行于两个端口)。记住mountd可运行于任何端口(到底是哪个端口,需要在端口111做portmap查询),只是Linux默认端口是635,就像NFS通常运行于2049端口。
端口:636
服务:LDAP
说明:SSL(Secure Sockets layer)
端口:666
服务:Doom Id Software
说明:木马Attack FTP、Satanz Backdoor开放此端口
端口:993
服务:IMAP
说明:SSL(Secure Sockets layer)
TCP 7=Echo
TCP 20=FTP Data
TCP 21=Back Construction, Blade Runner, Doly Trojan, Fore, FTP trojan,
Invisible FTP, Larva, WebEx, WinCrash
TCP 23=Telnet, Tiny Telnet Server (= TTS)
TCP 25=SMTP, Ajan, Antigen, Email Password Sender, Happy 99, Kuang2,
ProMail trojan, Shtrilitz, Stealth, Tapiras, Terminator, WinPC, WinSpy
TCP 31=Agent 31, Hackers Paradise, Masters Paradise
TCP 41=DeepThroat
TCP 43=WHOIS
TCP 53=DNS,Bonk (DOS Exploit)
TCP 59=DMSetup
TCP 70=Gopher
TCP 79=Firehotcker, Finger
TCP 80=Http服务器, Executor, RingZero
TCP 99=Hidden Port
TCP 110=Pop3服务器, ProMail
TCP 113=Kazimas, Auther Idnet
TCP 119=Nntp, Happy 99
TCP 121=JammerKiller, Bo jammerkillah
TCP 137=NetBios-NS
TCP 138=NetBios-DGN
TCP 139=NetBios-SSN
TCP 143=IMAP
TCP 161=Snmp
TCP 162=Snmp-Trap
TCP 194=Irc
TCP 421=TCP Wrappers
TCP 456=Hackers paradise
TCP 531=Rasmin
TCP 555=Ini-Killer, Phase Zero, Stealth Spy
TCP 666=Attack FTP, Satanz Backdoor
TCP 808=RemoteControl
TCP 911=Dark Shadow
TCP 999=DeepThroat
TCP 1001=Silencer, WebEx
TCP 1010=Doly
TCP 1011=Doly
TCP 1012=Doly
TCP 1015=Doly
TCP 1024=NetSpy.698(YAI)
TCP 1025=NetSpy.698
TCP 1033=Netspy
TCP 1042=Bla
TCP 1045=Rasmin
TCP 1047=GateCrasher
TCP 1080=Wingate
TCP 1090=Xtreme, VDOLive
TCP 1170=Psyber Stream Server, Streaming Audio trojan
TCP 1234=Ultors
TCP 1243=BackDoor-G, SubSeven, SubSeven Apocalypse
TCP 1245=VooDoo Doll
TCP 1269=Mavericks Matrix
TCP 1492=FTP99CMP(BackOriffice.FTP)
TCP 1509=Psyber Streaming Server
TCP 1600=Shivka-Burka
TCP 1807=SpySender
TCP 1981=Shockrave
TCP 1999=BackDoor, TransScout
TCP 2001=TrojanCow
TCP 2023=Ripper, Pass Ripper
TCP2115=Bugs
TCP 2140=Deep Throat, The Invasor
TCP 2155=Illusion Mailer
TCP 2283=HVL Rat5
TCP2565=Striker
TCP 2583=WinCrash
TCP 2600=Digital RootBeer
TCP2801=Phineas Phucker
TCP3024=WinCrash trojan
TCP 3128=RingZero
TCP 3129=Masters Paradise
TCP 3150=Deep Throat, The Invasor
TCP 3210=SchoolBus
TCP 3459=Eclipse 2000
TCP 3700=Portal of Doom
TCP 3791=Eclypse
TCP 4000=腾讯OICQ客户端
TCP 4092=WinCrash
TCP 4321=BoBo
TCP 4567=File Nail
TCP 4590=ICQTrojan
TCP 5000=Bubbel, Back Door Setup, Sockets de Troie
TCP 5001=Back Door Setup, Sockets de Troie
TCP 5011=One of the Last Trojans (OOTLT)
TCP 5031=Firehotcker
TCP 5190=ICQ Query
TCP 5321=Firehotcker
TCP 5400=Blade Runner, BackConstruction1.2
TCP 5401=Blade Runner
TCP 5402=Blade Runner
TCP 5550=Xtcp
TCP 5555=ServeMe
TCP 5556=BO Facil
TCP 5557=BO Facil
TCP 5569=Robo-Hack
TCP 5631=PCAnyWhere data
TCP 5714=Wincrash3
TCP 5742=WinCrash
TCP 6400=The Thing
TCP 6667=NT Remote Control
TCP 6669=Vampyre
TCP 6670=DeepThroat
TCP 6711=SubSeven
TCP 6771=DeepThroat
TCP 6776=BackDoor-G, SubSeven
TCP 6883=DeltaSource
TCP 6912=Shit Heep
TCP 6939=Indoctrination
TCP 6969=GateCrasher, Priority, IRC 3
TCP 6970=GateCrasher
TCP 7000=Remote Grab
TCP 7300=NetMonitor
TCP 7301=NetMonitor
TCP 7306=NetMonitor
TCP 7307=NetMonitor, ProcSpy
TCP 7308=NetMonitor, X Spy
TCP 7323=Sygate服务器端
TCP 7626=冰河
TCP 7789=Back Door Setup, ICKiller
TCP 8000=XDMA, 腾讯OICQ服务器端
TCP 8010=Logfile
TCP 8080=WWW 代理, Ring Zero
TCP 9400=InCommand
TCP 9401=InCommand
TCP 9402=InCommand
TCP 9872=Portal of Doom
TCP 9873=Portal of Doom
TCP 9874=Portal of Doom
TCP 9875=Portal of Doom
TCP 9876=Cyber Attacker
TCP 9878=TransScout
TCP 9989=Ini-Killer
TCP 10101=BrainSpy
TCP 10167=Portal Of Doom
TCP 10520=Acid Shivers
TCP 10607=Coma trojan
TCP 11000=Senna Spy
TCP 11223=Progenic
TCP 12076=Gjamer, MSH.104b
TCP 12223=Hack?9 KeyLogger
TCP 12345=GabanBus, NetBus, Pie Bill Gates, X-bill
TCP 12346=GabanBus, NetBus, X-bill
TCP 12361=Whack-a-mole
TCP 12362=Whack-a-mole
TCP 12631=WhackJob
TCP 13000=Senna Spy
TCP 16969=Priority
TCP 17300=Kuang2 The Virus
TCP 20000=Millennium II (GrilFriend)
TCP 20001=Millennium II (GrilFriend)
TCP 20034=NetBus 2 Pro
TCP 20203=Logged
TCP 20331=Bla
TCP 21544=Schwindler 1.82, GirlFriend
TCP 22222=Prosiak
TCP 23456=Evil FTP, Ugly FTP, WhackJob
TCP 23476=Donald Dick
TCP 23477=Donald Dick
TCP 27374=Sub Seven 2.0+
TCP 29891=The Unexplained
TCP 30029=AOL trojan
TCP 30100=NetSphere 1.27a, NetSphere 1.31
TCP 30101=NetSphere 1.31, NetSphere 1.27a
TCP 30102=NetSphere 1.27a, NetSphere 1.31
TCP 30103=NetSphere 1.31
TCP 30303=Sockets de Troie
TCP 30999=Kuang2
TCP 31336=Bo Whack
TCP 31337=Baron Night, BO client, BO2, Bo Facil, BackFire, Back Orifice,
DeepBO
TCP 31339=NetSpy DK
TCP 31666=BOWhack
TCP 31785=Hack Attack
TCP 31787=Hack Attack
TCP 31789=Hack Attack
TCP 31791=Hack Attack
TCP 33333=Prosiak
TCP 33911=Spirit 2001a
TCP 34324=BigGluck, TN
TCP 40412=The Spy
TCP 40421=Agent 40421, Masters Paradise.96
TCP 40422=Masters Paradise
TCP 40423=Masters Paradise.97
TCP 40426=Masters Paradise
TCP 47878=BirdSpy2
TCP 50505=Sockets de Troie
TCP 50766=Fore, Schwindler
TCP 53001=Remote Windows Shutdown
TCP 54320=Back Orifice 2000
TCP 54321=School Bus .69-1.11
TCP 60000=Deep Throat
TCP 61466=Telecommando
TCP 65000=Devil
UDP 1349=BO dll
UDP 2989=RAT
UDP 3801=Eclypse
UDP 10067=Portal of Doom
UDP 10167=Portal of Doom
UDP 26274=Delta Source
UDP 29891=The Unexplained
UDP 31337=Baron Night, BO client, BO2, Bo Facil, BackFire, Back Orifice,
DeepBO
UDP 31338=Back Orifice, NetSpy DK, DeepBO
UDP 31789=Hack aTack
UDP 31791=Hack aTack
UDP 47262=Delta Source
UDP 54321=Back Orifice 2000
黑客常用软件以及方法
http://www..com/s?ie=gb2312&bs=%BA%DA%BF%CD%B3%A3%D3%C3%B6%CB%BF%DA&sr=&z=&cl=3&f=8&wd=%BA%DA%BF%CD%B3%A3%D3%C3%C8%ED%BC%FE&ct=0
J. Linux服务器是否被攻击怎么判断
1、检查系统密码文件
首先从明显的入手,查看一下passwd文件,ls –l /etc/passwd查看文件修改的日期。
检查一下passwd文件中有哪些特权用户,系统中uid为0的用户都会被显示出来。
1
awk –F:’$3==0{print$1}’/etc/passwd
顺便再检查一下系统里有没有空口令帐户:
1
awk –F: ‘length($2)==0{print$1}’/etc/shadow
2、查看一下进程,看看有没有奇怪的进程
重点查看进程:ps –aef | grep inetd
inetd是UNIX系统的守护进程,正常的inetd的pid都比较靠前,如果你看到输出了一个类似inetd –s /tmp/.xxx之类的进程,着重看inetd –s后面的内容。在正常情况下,LINUX系统中的inetd服务后面是没有-s参数的,当然也没有用inetd去启动某个文件;而solaris系统中也仅仅是inetd –s,同样没有用inetd去启动某个特定的文件;如果你使用ps命令看到inetd启动了某个文件,而你自己又没有用inetd启动这个文件,那就说明已经有人入侵了你的系统,并且以root权限起了一个简单的后门。
输入ps –aef 查看输出信息,尤其注意有没有以./xxx开头的进程。一旦发现异样的进程,经检查为入侵者留下的后门程序,立即运行kill –9 pid 开杀死该进程,然后再运行ps –aef查看该进程是否被杀死;一旦此类进程出现杀死以后又重新启动的现象,则证明系统被人放置了自动启动程序的脚本。这个时候要进行仔细查找:find / -name 程序名 –print,假设系统真的被入侵者放置了后门,根据找到的程序所在的目录,会找到很多有趣的东东J
UNIX下隐藏进程有的时候通过替换ps文件来做,检测这种方法涉及到检查文件完整性,稍后我们再讨论这种方法。
接下来根据找到入侵者在服务器上的文件目录,一步一步进行追踪。
3、检查系统守护进程
检查/etc/inetd.conf文件,输入:cat /etc/inetd.conf | grep –v “^#”,输出的信息就是你这台机器所开启的远程服务。
一般入侵者可以通过直接替换in.xxx程序来创建一个后门,比如用/bin/sh 替换掉in.telnetd,然后重新启动inetd服务,那么telnet到服务器上的所有用户将不用输入用户名和密码而直接获得一个rootshell。
4、检查网络连接和监听端口
输入netstat -an,列出本机所有的连接和监听的端口,查看有没有非法连接。
输入netstat –rn,查看本机的路由、网关设置是否正确。
输入 ifconfig –a,查看网卡设置。
5、检查系统日志
命令last | more查看在正常情况下登录到本机的所有用户的历史记录。但last命令依赖于syslog进程,这已经成为入侵者攻击的重要目标。入侵者通常会停止系统的syslog,查看系统syslog进程的情况,判断syslog上次启动的时间是否正常,因为syslog是以root身份执行的,如果发现syslog被非法动过,那说明有重大的入侵事件。
在linux下输入ls –al /var/log
在solaris下输入 ls –al /var/adm
检查wtmp utmp,包括messgae等文件的完整性和修改时间是否正常,这也是手工擦除入侵痕迹的一种方法。
6、检查系统中的core文件
通过发送畸形请求来攻击服务器的某一服务来入侵系统是一种常规的入侵方法,典型的RPC攻击就是通过这种方式。这种方式有一定的成功率,也就是说它并不能100%保证成功入侵系统,而且通常会在服务器相应目录下产生core文件,全局查找系统中的core文件,输入find / -name core –exec ls –l {} ; 依据core所在的目录、查询core文件来判断是否有入侵行为。
7、.rhosts和.forward
这是两种比较着名的后门文件,如果想检查你的系统是否被入侵者安装了后门,不妨全局查找这两个文件:
find / -name “.rhosts” –print
find / -name “.forward” –print
在某用户的$HOME下,.rhosts文件中仅包含两个+号是非常危险的,如果你的系统上开了513端口(rlogin端口,和telnet作用相同),那么任意是谁都可以用这个用户登录到你的系统上而不需要任何验证。
看到这里如果想要深入的做安全加固服务以及安全部署
就必须找专业做服务器的安全公司来处理了国内也就Sine安全和绿盟比较专业提供。
Unix下在.forward文件里放入命令是重新获得访问的常用方法在某一 用户$HOME下的.forward可能设置如下:
username|"/usr/local/X11/bin/xterm -disp hacksys.other.dom:0.0 –e /bin/sh"
这种方法的变形包括改变系统的mail的别名文件(通常位于/etc/aliases). 注意这只是一种简单的变换. 更为高级的能够从.forward中运行简单脚本实现在标准输入执行任意命令(小部分预处理后).利用smrsh可以有效的制止这种后门(虽然如果允许可以自运行的elm's filter或procmail类程序, 很有可能还有问题。在Solaris系统下,如果你运行如下命令:
ln -s /var/mail/luser ~/.forward
然后设置vacation有效,那么/var/mail/luser就会被拷贝到~/.forward,同时会附加"|/usr/bin/vacation me",旧的symlink被移到~/.forward..BACKUP中。
直接删除掉这两个文件也可以。
8、检查系统文件完整性
检查文件的完整性有多种方法,通常我们通过输入ls –l 文件名来查询和比较文件,这种方法虽然简单,但还是有一定的实用性。但是如果ls文件都已经被替换了就比较麻烦。在LINUX下可以用rpm –V `rpm –qf 文件名` 来查询,国家查询的结果是否正常来判断文件是否完整。在LINUX下使用rpm来检查文件的完整性的方法也很多,这里不一一赘述,可以man rpm来获得更多的格式。
UNIX系统中,/bin/login是被入侵者经常替换作为后门的文件,接下来谈一下login后门 :
UNIX里,Login程序通常用来对telnet来的用户进行口令验证。入侵者获取login的源代码并修改,使它在比较输入口令与存储口令时先检查后门口令。如果用户敲入后门口令,它将忽视管理员设置的口令让你长驱直入:这将允许入侵者进入任何账号,甚至是root目录。由于后门口令是在用户真实登录并被日志记录到utmp和wtmP前产生的一个访问,所以入侵者可以登录获取shell却不会暴露该账号。管理员注意到这种后门后,使用”strings”命令搜索login程序以寻找文本信息。许多情况下后门口令会原形毕露。入侵者又会开始加密或者更改隐藏口令,使strings命令失效。所以许多管理员利用MD5校验和检测这种后门。UNIX系统中有md5sum命令,输入md5sum 文件名检查该文件的md5签名。它的使用格式如下:md5sum –b 使用二进制方式阅读文件;md5sum –c 逆向检查MD5签名;md5sum –t 使用文本方式阅读文件。
在前面提到过守护进程,对于守护进程配置文件inetd.conf中没有被注释掉的行要进行仔细比较,举个简单的例子,如果你开放了telnet服务,守护进程配置文件中就会有一句:telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
可以看到它所使用的文件是 /usr/sbin/in.telnetd,检查该文件的完整性,入侵者往往通过替换守护进程中允许的服务文件来为自己创建一个后门。
LINUX系统中的/etc/crontab也是经常被入侵者利用的一个文件,检查该文件的完整性,可以直接cat /etc/crontab,仔细阅读该文件有没有被入侵者利用来做其他的事情。
不替换login等文件而直接使用进程来启动后门的方法有一个缺陷,即系统一旦重新启动,这个进程就被杀死了,所以得让这个后门在系统启动的时候也启动起来。通常通过检查/etc/rc.d下的文件来查看系统启动的时候是不是带有后门程序;这个方法怎么有点象查windows下的trojan?
说到这里,另外提一下,如果在某一目录下发现有属性为这样的文件:-rwsr-xr-x 1 root root xxx .sh,这个表明任何用户进来以后运行这个文件都可以获得一个rootshell,这就是setuid文件。运行 find –perm 4000 –print对此类文件进行全局查找,然后删除这样的文件。
9、检查内核级后门
如果你的系统被人安装了这种后门,通常都是比较讨厌的,我常常就在想,遇到这种情况还是重新安装系统算了J,言归正传,首先,检查系统加载的模块,在LINUX系统下使用lsmod命令,在solaris系统下使用modinfo命令来查看。这里需要说明的是,一般默认安装的LINUX加载的模块都比较少,通常就是网卡的驱动;而solaris下就很多,没别的办法,只有一条一条地去分析。对内核进行加固后,应禁止插入或删除模块,从而保护系统的安全,否则入侵者将有可能再次对系统调用进行替换。我们可以通过替换create_mole()和delete_mole()来达到上述目的。另外,对这个内核进行加固模块时应尽早进行,以防系统调用已经被入侵者替换。如果系统被加载了后门模块,但是在模块列表/proc/mole里又看不到它们,有可能是使用了hack工具来移除加载的模块,大名鼎鼎的knark工具包就有移除加载模块的工具。出现这种情况,需要仔细查找/proc目录,根据查找到的文件和经验来判断被隐藏和伪装的进程。Knark后门模块就在/proc/knark目录,当然可能这个目录是隐藏的。