当前位置:首页 » 云服务器 » 服务器如何看bus总线

服务器如何看bus总线

发布时间: 2022-07-04 16:13:00

① 计算机总线按其任务可以分为哪四种呢

按照功能划分,大体上可以分为地址总线和数据总线。有的系统中,数据总线和地址总线是复用的,即总线在某些时刻出现的信号表示数据而另一些时刻表示地址;而有的系统是分开的。51系列单片机的地址总线和数据总线是复用的,而一般PC中的总线则是分开的。

按照传输数据的方式划分,可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SPI、I2C、USB及RS232等。

按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。

② 求助计算机总线

计算机方面 FSB=Front Side BUS前段总线 FSB只指CPU与北桥芯片之间的数据传输总线,又称前端总线。 对于P4来说,FSB频率=CPU外频*4。 这个参数指的就是前端总线的频率,它是处理器与主板交换数据的通道,既然是通道,那就是越大越好,现在主流中最高的FSB是800M,向下有533M、400M和333M等几种,它们价格是递减的。(现在也有1066/1333 FSB的主板不过由于面向骨灰级发烧级的玩家和超频者,价格比较高昂) FSB(或是FrontSideBus,前端总线)是超频最容易和最常见的方法之一。FSB是CPU与系统其它部分连接的速度。它还影响内存时钟,那是内存运行的速度。一般而言,对FSB和内存时钟两者来说越高等于越好。然而,在某些情况下这不成立。例如,让内存时钟比FSB运行得快根本不会有真正的帮助。同样,在AthlonXP系统上,让FSB运行在更高速度下而强制内存与FSB不同步(使用稍后将讨论的内存分频器)对性能的阻碍将比运行在较低FSB及同步内存下要严重得多。 FSB在Athlon和P4系统上涉及到不同的方法。在Athlon这边,它是DDR总线,意味着如果实际时钟是200MHz的话,那就是运行在400MHz下。在P4上,它是“四芯的”,所以如果实际时钟是相同的200MHz的话,就代表800MHz。这是Intel的市场策略,因为对一般用户来说,越高等于越好。Intel的“四芯”FSB实际上具有一个现实的优势,那就是以较小的性能损失为代价允许P4芯片与内存不同步运行。每个时钟越高的周期速度使得它越有机会让内存周期与CPU周期重合,那等同于越好的性能 Front Side Bus,简写为FSB,前端总线 ! FSB决定CPU的运行速度,FSB可以通过超频来提高! FSB高电脑的运行速度也会有所提高的! FSB的由来:“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念,但是一直以来都被大家误认为这个名词不过是外频的另一个名称。我们所说的外频指的是CPU与主板连接的速度,这个概念是建立在数字脉冲信号震荡速度基础之上的,而前端总线的速度指的是数据传输的速度,由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz几种,前端总线频率越大,代表着CPU与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU。较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。 前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作,只不过一个CPU默认的前端总线是唯一的,因此看一个系统的前端总线主要看CPU就可以。 北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。显然同等条件下,前端总线越快,系统性能越好。 外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。 常见芯片组对应的前端总线频率: Intel平台系列 Intel芯片组: 845、845D、845GL所支持的前端总线频率是400MHz,845E、845G、845GE、845PE、845GV以及865P、910GL所支持的前端总线频率是533MHz,而865PE、865G、865GV、848P、875P、915P、915G、915GV、915PL、915GL、925X、945PL、945GZ所支持的前端总线频率是800MHz,定位于欢跃(VIIV)平台的945GT所支持的前端总线频率是533MHz和667MHz,高端的925XE、945P、945G、955X、975X所支持的前端总线频率是1066MHz。946PL和946GZ所支持的前端总线频率是800MHz,而P965、G965、Q965和Q963所支持的前端总线频率则都是1066MHz。 VIA芯片组: P4X266、P4X266A、P4M266所支持的前端总线频率是400MHz,P4X266E、P4X333、P4X400、P4X533所支持的前端总线频率是533MHz,PT800、PT880、PM800、PM880、P4M800、P4M800 Pro、PT880 Pro所支持的前端总线频率是800MHz,PT880 Ultra、PT894、PT894 Pro、PT890所支持的前端总线频率也高达1066MHz。P4M890所支持的前端总线频率是800MHz,而P4M900所支持的前端总线频率则是1066MHz。 SIS芯片组: SIS645、SIS645DX、SIS650所支持的前端总线频率是400MHz,SIS651、SIS655、SIS648、SIS661GX所支持的前端总线频率是533MHz,SIS648FX、SIS661FX、SIS655FX、SIS655TX、SIS649、SIS656、SIS662所支持的前端总线频率是800MHz,SIS649FX和SIS656FX所支持的前端总线频率则高达1066MHz。 ATI芯片组: Radeon 9100 IGP、Radeon 9100 Pro IGP、RX330、Radeon Xpress 200 IE(RC410)、Radeon Xpress 200 IE(RXC410)所支持的前端总线频率是800MHz,Radeon Xpress 200 IE(RS400)、Radeon Xpress 200 CrossFire IE(RD400)、CrossFire Xpress 1600 IE所支持的前端总线频率则高达1066MHz。 ULI芯片组: M1683和M1685所支持的前端总线频率是800MHz。 NVIDIA芯片组: nForce4 SLI IE、nForce4 SLI X16 IE、nForce4 SLI XE、nForce4 Ultra IE所支持的前端总线频率全部都高达1066MHz。nForce 590 SLI IE、nForce 570 SLI IE和nForce 570 Ultra IE所支持的前端总线频率全部都是1066MHz。 AMD平台系列 VIA芯片组: KT266、KT266A、KM266所支持的前端总线频率是266MHz,KT333、KT400、KT400A、KM400、KN400所支持的前端总线频率是333MHz,KT600和KT880所支持的前端总线频率是400MHz。 SIS芯片组: SIS735、SIS745、SIS746、SIS740所支持的前端总线频率是266MHz,SIS741GX和SIS746FX所支持的前端总线频率是333MHz,SIS741和SIS748所支持的前端总线频率是400MHz。 Uli芯片组: M1647所支持的前端总线频率是266MHz。 nVidia芯片组: nForce2 IGP、nForce2 400和nForce2 Ultra 400所支持的前端总线频率是400MHz。 此外,由于AMD64系列CPU内部整合了内存控制器,其HyperTransport频率只与CPU接口类型有关,而与主板芯片组无关,所以其HyperTransport频率的区分是相当简单的:Socket 754接口的所有CPU的HyperTransport频率都是800MHz;Socket 939接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket 939接口CPU的HyperTransport频率都是1000MHz;旧版的Socket 940接口CPU的HyperTransport频率也是800MHz,而新版的Socket 940接口CPU的HyperTransport频率也已经提高到了1000MHz;Socket S1接口的所有CPU的HyperTransport频率都是800MHz;Socket AM2接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket AM2接口CPU的HyperTransport频率都是1000MHz;即将发布的Socket F接口Opteron的HyperTransport频率则都是1000MHz。 常见CPU对应的前端总线频率: 【Intel CPU】 Willamette核心CPU: 所有Willamette核心CPU的FSB都是400MHz FSB。 Northwood核心CPU: 相对于Willamette核心CPU,Northwood核心CPU的前端总线频率则非常复杂,400MHz、533MHz和800MHz都有。其中,Celeron全部都是400MHz FSB;Pentium 4方面,1.6GHz-2.8GHz都有400MHz FSB的产品,例如1.8A、2.0A等等,Pentium 4型号后面带有"B"字样的则是533MHz FSB,带有"C"字样的则是800MHz FSB。 Prescott核心CPU: Prescott核心的Celeron D,无论是Socket 478接口还是Socket 775接口,全部都是533MHz FSB。 Socket 478接口的Pentium 4方面,2.4A和2.8A是533MHz FSB,其余的Socket 478 Pentium 4都是800MHz FSB,在产品型号后面带有"E"字样。 Socket 775接口的Pentium 4 5XX系列方面,编号尾数为"5"的是533MHz FSB,例如Pentium 4 505/515;编号尾数为"0"的是800MHz FSB,例如Pentium 4 520/530/540等等。即将推出的Pentium 4 6XX系列CPU则都是800MHz FSB。 Pentium 4至尊版(即Pentium 4 EE,又称Pentium 4 XE): 所有Socket 478接口的Pentium 4 EE都是800MHz FSB。Socket 775接口的Pentium 4 EE,Gallatin/Prescott核心的3.4GHz是800MHz FSB,3.46GHz则是1066MHz FSB,这是目前PC上最高的前端总线频率。 Pentium EE: Smithfield核心的Pentium EE 840是800MHz FSB,而Presler核心的Pentium EE 955和965都是1066MHz FSB。 Xeon和Xeon MP: 所有Socket 603接口的Xeon和Xeon MP都是400MHz FSB;Socket 604接口的Xeon中,支持Intel 64位计算技术EM64T的Xeon是800MHz FSB,而不支持EM64T的Xeon则是533MHz FSB;Socket 771接口的Xeon中,Xeon 5000系列是667MHz或1066MHz FSB,而Xeon 7100系列则是1066MHz或1333MHz FSB;Socket 604接口的Xeon MP除了Xeon MP 7000系列是667MHz或800MHz FSB之外则全部都是667MHz FSB。 Cedar Mill核心CPU: Cedar Mill核心的Celeron D目前都是533MHz FSB,而Cedar Mill核心的Pentium 4则都是800MHz FSB。 Yonah核心CPU: 目前Core Duo和Core Solo的T系列和L系列除了Core Duo T2x50和Core Solo T1x50是533MHz FSB之外都是667MHz FSB,而U系列则都是533MHz FSB;Celeron M 4xx系列则全部都是533MHz FSB。 Pentium D: 目前除了Smithfield核心的Pentium D 8X5系列是533MHz FSB之外,其它的Smithfield核心的Pentium D 8X0系列和Presler核心的Pentium D 9X0都是800MHz FSB。而Pentium D 9X5系列是1066MHz的FSB。 Core 2 Duo(酷睿2双核处理器): 目前应用于桌面平台的Core 2 Duo E6x00系列都是1066MHz FSB,而即将推出的Core 2 Duo E4x00系列则是800MHz FSB;目前应用于移动平台的Core 2 Duo T5x00系列和T7x00系列则都是667MHz FSB,在推出第四代迅驰平台Santa rosa时则会提升到800MHz FSB。 Core 2 Extreme(酷睿2双核处理器至尊版): 目前Core 2 Extreme X6x00是1066MHz FSB,未来的Core 2 Extreme则将提升到1333MHz FSB。 Itanium 2: Itanium 2 9000系列是400MHz或533MHz FSB,除此之外的所有Itanium 2全部都是400MHz FSB。 【AMD CPU】 Socket A平台: Socket A接口的Sempron是333MHz FSB,AppleBred核心的Duron则是266MHz FSB;Athlon XP方面,Palomino核心为266MHz FSB,Thoroughbred核心为266MHz和333MHz FSB,Barton核心为333MHz和400MHz FSB,而Thorton核心则为333MHz FSB。 AMD64平台: Socket 754接口的所有CPU的HyperTransport频率都是800MHz;Socket 939接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket 939接口CPU的HyperTransport频率都是1000MHz;旧版的Socket 940接口CPU的HyperTransport频率也是800MHz,而新版的Socket 940接口CPU的HyperTransport频率也已经提高到了1000MHz;Socket S1接口的所有CPU的HyperTransport频率都是800MHz;Socket AM2接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket AM2接口CPU的HyperTransport频率都是1000MHz;即将发布的Socket F接口Opteron的HyperTransport频率则都是1000MHz。 QPI 一、FSB正离我们远去 众所周之,前端总线(Front Side Bus,简称FSB)是将CPU中央处理器连接到北桥芯片的系统总线,它是CPU和外界交换数据的主要通道。前端总线的数据传输能力对计算机整体性能影响很大,如果没有足够带宽的前端总线,即使配备再强劲的CPU,用户也不会感觉到计算机整体速度的明显提升。 目前intel处理器主流的前端总线频率有800MHz、1066MHz、1333MHz几种,而就在2007年11月,intel再度将处理器的前端总线频率提升至1600MHz(默认外频400MHz),这比2003年最高的800MHzFSB总线频率整整提升了一倍。这样高的前端总线频率,其带宽多大呢?前端总线为1333MHz时,处理器与北桥之间的带宽为10.67GB/s,而提升到1600MHz能达到12.8GB/s,增加了20%。 虽然intel处理器的前端总线频率看起来已经很高,但与同时不断提升的内存频率、高性能显卡(特别是双或多显卡系统)相比,CPU与芯片组存在的前端总线瓶颈仍未根本改变。例如1333MHz的FSB所提供的内存带宽是1333MHz×64bit/8=10667MB/s=10.67GB/s,与双通道的DDR2-667内存刚好匹配,但如果使用双通道的DDR2-800、DDR2-1066的内存,这时FSB的带宽就小于内存的带宽。更不用说和未来的三通道和更高频率的DDR3内存搭配了(Nehalem平台三通道DDR3-1333内存的带宽可达32GB/s)。 与AMD的HyperTransport(HT)总线技术相比,FSB的带宽瓶颈也很明显。HT作为AMD CPU上广为应用的一种端到端的总线技术,它可在内存控制器、磁盘控制器以及PCI-E总线控制器之间提供更高的数据传输带宽。HT1.0在双向32bit模式的总线带宽为12.8GB/s,其带宽便可匹敌目前最新的FSB带宽。2004年AMD推出的HT2.0规格,最大带宽又由1.0的12.8GB/s提升到了22.4GB/s。而最新的HT3.0又将工作频率从HT2.0最高的1.4GHz提高到了2.6GHz,提升幅度几乎又达到了一倍。这样,HT3.0在2.6GHz高频率32bit高位宽运行模式下,即可提供高达41.6GB/s的总线带宽(即使在16bit的位宽下也能提供20.8GB/s 带宽),相比FSB优势明显,应付未来两年内内存、显卡和处理器的升级需要也没有问题。 面对这种带宽上的劣势,虽然intel通过对市场的准确把握,以及其他优势技术上的弥补(如指令集优势、如CPU效率上intel的酷睿2双核共享二级缓存互联架构要明显优于AMD HT互联下的的双核架构等等),让AMD的带宽优势并没有因此转化为胜势,但intel要想改变这种处理器和北桥设备之间带宽捉襟见肘的情况,纵使在现可在技术上将FSB频率进一步提高到2133MHz,也难以应付未来DDR3内存及多显卡系统所带来的带宽需求。Intel推出新的总线技术势在必行。 二、当世界失去FSB我们还有QPI Intel自身也清醒的认识到,要想在通过单纯提高处理器的外频和FSB,也难以像以前那样带来更好的性能提升。采用全新的Nehalem架构的intel下一代CPU让我们看到了英特尔变革的决心。目前已经正式发布,基于该架构的代号为Boomfield第一款处理器,我们可以看见很多很多技术的细节——该处理器拥有全新的规格和性能,采用全新的LGA 1366接口,45nm制程,集成三通道DDR3内存控制器(支持DDR3 800/1066/1333/1600内存规格),使用新总线QPI与处理器进行连接,支持SMT(Simultaneous Muti-hreading,单颗处理器就可以支持8线程并行技术)多线程技术,支持SSE4.2指令集(增加了7条新的SSE4指令),是intel第一款原生四核处理器…… 当然,在其拥有的众多技术中,最引人注目的应该还是QPI(原先宣传的CSI总线)总线技术,他是全新的Nahalem架构之所以能在架构、功能和性能上取得大突破的关键性技术。 三、QPI能给我们带来什么 QPI(Quick Path Interconnect)——"快速通道互联",取代前端总线(FSB)的一种点到点连接技术,20位宽的QPI连接其带宽可达惊人的每秒25.6GB,远非FSB可比。QPI最初能够发放异彩的是支持多个处理器的服务器平台,QPI可以用于多处理器之间的互联。 1. QPI是通信更加方便 QPI是在处理器中集成内存控制器的体系架构,主要用于处理器之间和系统组件之间的互联通信(诸如I/O)。他抛弃了沿用多年的的FSB,CPU可直接通过内存控制器访问内存资源,而不是以前繁杂的“前端总线——北桥——内存控制器”模式。并且,与AMD在主流的多核处理器上采用的4HT3(4根传输线路,两根用于数据发送,两个用于数据接收)连接方式不同,英特尔采用了4+1 QPI互联方式(4针对处理器,1针对I/O设计),这样多处理器的每个处理器都能直接与物理内存相连,每个处理器之间也能彼此互联来充分利用不同的内存,可以让多处理器的等待时间变短(访问延迟可以下降50%以上),只用一个内存插槽就能实现与四路AMD皓龙处理器(AMD在服务器领域的处理器,与intel至强同等产品定位)同等带宽。 2. QPI、处理器间峰值带宽可达96GB/s 在intel高端的安腾处理器系统中,QPI高速互联方式使得CPU与CPU之间的峰值带宽可达96GB/s,峰值内存带宽可达34GB/s。这主要在于QPI采用了与PCI-E类似的点对点设计,包括一对线路,分别负责数据发送和接收,每一条通路可传送20bit数据。这就意味着即便是最早的QPI标准,其传输速度也能达到6.4GB/s——总计带宽可达到25.6GB/s(为FSB 1600MHz的12.8GHz的两倍)。这样的带宽已可媲美AMD目前的总线解决方案,能满足未来CPU与CPU、CPU与芯片的数据传输要求。 3. 多核间互传资料不用经过芯片组 QPI总线可实现多核处理器内部的直接互联,而无须像以前那样还要再经过FSB进行连接。例如,针对服务器的Nehalem架构的处理器拥有至少4组QPI传输,可至少组成包括4颗处理器的4路高端服务器系统(也就是16颗运算内核至少32线程并行运作)。而且在多处理器作业下,每颗处理器可以互相传送资料,并不需要经过芯片组,从而大幅提升整体系统性能。随着未来Nehalem架构的处理器集成内存控制器、PCI-E 2.0图形接口乃至图形核心的出现,QPI架构的优势见进一步发挥出来。 4. QPI互联架构本身具有升级性 QPI采用串联方式作为讯号的传送,采用了LVDS(低电压差分信号技术,主要用于高速数字信号互联,使信号能以几百Mbps以上的速率传输)信号技术,可保证在高频率下仍能保持稳定性。QPI拥有更低的延迟及更好的架构,将包括集成的存储器控制器以及系统组件间的通信链路。 5. QPI总线架构具备可靠性和性能 可靠性、实用性和适用性特点为QPI的高可用性提供了保证。比如链接级循环冗余码验证(CRC)。出现时钟密码故障时,时钟能自动改路发送到数据信道。QPI还具备热插拔。深度改良的微架构、集成内存控制器设计以及QPI直接技术,令Nehalem拥有更出色的执行效率,在单线程同频率下,Nehalem拥有更为出色的执行效率,在单线程同频率条件下,Nehalem的运算能力在相同功耗下比现行的Penryn架构的效能可能提高30%。 参考文献: http://ke..com/view/22256.htm http://ke..com/view/1377507.htm

③ 求具有m-bus总线的电表型号!以及支持这种电表的无线抄表方案!

系统整体解决方案
一、系统总体架构

硬件主要包括
电表
CDMA数传
UIM卡
服务器:用于数据存储、提取、分析等,是数据中心。
监控中心:,装有数据采集软件的计算机
二、系统工作过程
1、CDMA数传上电后自动与设定的IP地址Y的服务器端口3000建立TCP/IP连接;
2、建立TCP/IP连接之后,数据采集软件通过Socket接口向CDMA数传的IP地址发送Modbus命令报文;
3、CDMA模块将命令报文的数据由串行口输出到控制器,控制器处理命令报文,通过串口回传数据到CDMA数传;
4、CDMA数传将回传数据发送到服务器的3000端口。
三、关于IPX和IPY
注:IPX是安装在CDMA数传当中的UIM卡的IP地址;IPY是通过ADSL、光纤或者专线等有线方式的IP地址。可有以下几种选择

第一种:
UIM卡为普通上网卡,获取的IP地址IPX为公网上的非固定IP地址;
监控中心通过ADSL、光纤等方式获取的IP地址IPY为公网上的非固定IP地址,通过在数据服务器安装花生壳等域名注册软件,申请域名来指向服务器, CDMA数传进行域名解析,从而与服务器之间的TCP连接。
优点:监控中心网络建设成本低。
缺点:服务器IP不固定,在IP更新周期时导致数据通信无法建立,将数据放到互联网上,安全性低。

第二种:
UIM卡为普通上网卡,获取的IP地址IPX为公网上的非固定IP地址;
监控中心通过专线方式获取的IP地址IPY为公网上的固定IP地址。
优点:服务器IP固定,通信连接稳定,数据传输稳定。
缺点:监控中心网络建设成本偏高,将数据放到互联网上,安全性低。

第三种
UIM卡为专用上网卡,获取的IP地址IPX为固定IP地址,注意不是公网IP
监控中心通过专线方式获取的IP地址IPY为非公网上的固定IP地址,但是IPX和IPY是局域网内的两个IP,这样CDMA数传可以向上连接服务器,服务器又可以向下连接CDMA数传。
优点:服务器IP固定,UIM卡IP固定,两端都可以作为服务器,通信连接稳定,不通过互联网,提高安全性。
缺点:每张UIM卡为固定IP地址,成本高。
GPRS数传传输模式解析

④ 如何构建canbus应用层协议

可用RS232转CAN请看武汉鸿伟光电ECAN100RS232/485/422/CanBus总线接入服务器ECAN100协议转换器是一款高速度、高性能、电源信号双隔离、内建CAN协议解释微处理器的产品。它可将RS-232/RS-485/RS-422配置的系统进行转换以便可以在CAN(控制器局域网络)总线系统下工作。这样就可以使用标准的PC硬件构建一个实时的通讯系统,同时也可以利用CAN的优异特性实现RS-232/RS-485/RS-422信号的超远程传输。E232CAN232/CanBus隔离转换器E232CAN实现RS-232与CanBus总线电平隔离转换,支持远程通信(可达7Km)和多机通信(110接点),半双工使用,外加DC5V电源。

⑤ 什么是ESB(企业服务总线)

ESB是一种IT架构方法。ESB旨在通过“总线式”基础设施将各种应用集成在一起。ESB通常位于框架和套件之间,作为执行应用集成的另一种方式。ESB是一个中间件工具,它在构成应用程序的不同连接组件之间分配任务。 它为完成一些任务奠定了基本的基础架构,例如:

  • 实现路由选择

  • 翻译

  • 提供一个移动任务的总体方法

  • 提供应用程序连接到”总线”的能力。

  • 订阅基于结构和业务政策规则发送的消息。

  • 其他集成能力

ESB的建立是为了简化从服务和应用程序到大型机等不同格式想要相互集成时可能出现的混乱。然而,问题是ESB究竟是如何工作的?

1.企业服务总线是一组交换机,在应用程序和/或组件之间的特定路线上直接发送消息。

2.每个企业都有特定的业务策略,决定ESB将采取哪条路径来处理这些消息。

无论是客户端还是业务流程,任何连接到ESB的系统都不会直接相互通信,因为它们通过ESB本身进行通信。本质上,ESB向潜在的客户机暴露了相同的服务接口,而连接的服务则向ESB暴露。

ESB的一个主要好处是围绕着ESB是一个单一的访问点。通过ESB连接客户和服务,公司只需要在一个单一的位置,即ESB中寻找服务。即使一个业务流程更换了服务器,只需要重新配置ESB,公司仍然可以通过ESB访问服务。

ESB还可以作为事务管理器工作,这意味着它可以协调多个服务参与的分布式事务。当许多不同的业务流程和服务需要在一个事务中一起工作时,通常需要一个配置来协调事务。然而,通过ESB,这就不再需要了,公司可以访问ESB来顺利地处理交易。

ESB还可以作为一个安全管理器,集中处理认证和授权等流程。无论应用程序中的一个业务流程是否具有认证或授权,ESB都可以调整它的设置,在它暴露给使用它的客户端的服务界面中要求这样做。

ESB 的另一种工作方式是作为服务代理,为没有暴露在标准化服务接口上的应用程序充当网关。举个例子,如果一个应用程序暴露了一个Java RMI服务,但网络的其他部分运行在.NET上,因此它不能直接调用RMI服务。通过利用ESB,公司可以很容易地在Java中实现一个可以调用RMI服务的服务代理。然后,服务代理通过ESB向.NET应用暴露出Web服务接口,如SOAP和WSDL。

linux服务器如何查看GPU信息

Linux查看显卡信息:

[python]view plain

  • lspci|grep-ivga

  • 使用nvidia GPU可以:

    [python]view plain

  • lspci|grep-invidia



  • 表头释义:

  • Fan:显示风扇转速,数值在0到100%之间,是计算机的期望转速,如果计算机不是通过风扇冷却或者风扇坏了,显示出来就是N/A;

  • Temp:显卡内部的温度,单位是摄氏度;

  • Perf:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能;

  • Pwr:能耗表示;

  • Bus-Id:涉及GPU总线的相关信息;

  • Disp.A:是Display Active的意思,表示GPU的显示是否初始化;

  • Memory Usage:显存的使用率;

  • Volatile GPU-Util:浮动的GPU利用率;

  • Compute M:计算模式;

  • 下边的Processes显示每块GPU上每个进程所使用的显存情况。

    如果要周期性的输出显卡的使用情况,可以用watch指令实现:

    [python]view plain

  • watch-n10nvidia-smi

  • 命令行参数-n后边跟的是执行命令的周期,以s为单位。

⑦ 服务器的基本知识

服务器作为网络的节点,存储、处理网络上80%的数据、信息,因此也被称为网络的灵魂。做一个形象的比喻:服务器就像是邮局的交换机,而微机、笔记本、PDA、手机等固定或移动的网络终端,就如散落在家庭、各种办公场所、公共场所等处的电话机。我们与外界日常的生活、工作中的电话交流、沟通,必须经过交换机,才能到达目标电话;同样如此,网络终端设备如家庭、企业中的微机上网,获取资讯,与外界沟通、娱乐等,也必须经过服务器,因此也可以说是服务器在“组织”和“领导”这些设备。
它是网络上一种为客户端计算机提供各种服务的高可用性计算机,它在网络操作系统的控制下,将与其相连的硬盘、磁带、打印机、Modem及各种专用通讯设备提供给网络上的客户站点共享,也能为网络用户提供集中计算、信息发表及数据管理等服务。它的高性能主要体现在高速度的运算能力、长时间的可靠运行、强大的外部数据吞吐能力等方面。
服务器的构成与微机基本相似,有处理器、硬盘、内存、系统总线等,它们是针对具体的网络应用特别制定的,因而服务器与微机在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面存在差异很大。尤其是随着信息技术的进步,网络的作用越来越明显,对自己信息系统的数据处理能力、安全性等的要求也越来越高,如果您在进行电子商务的过程中被黑客窃走密码、损失关键商业数据;如果您在自动取款机上不能正常的存取,您应该考虑在这些设备系统的幕后指挥者————服务器,而不是埋怨工作人员的素质和其他客观条件的限制。 [编辑本段]服务器分类 一:按照体系架构来区分
目前,按照体系架构来区分,服务器主要分为两类:
非x86服务器:包括大型机、小型机和UNIX服务器,它们是使用RISC(精简指令集)或EPIC处理器,并且主要采用UNIX和其它专用操作系统的服务器,精简指令集处理器主要有IBM公司的POWER和PowerPC处理器,SUN与富士通公司合作研发的SPARC处理器、EPIC处理器主要是HP与Intel合作研发的安腾处理器等。这种服务器价格昂贵,体系封闭,但是稳定性好,性能强,主要用在金融、电信等大型企业的核心系统中。
x86服务器:又称CISC(复杂指令集)架构服务器,即通常所讲的PC服务器,它是基于PC机体系结构,使用Intel或其它兼容x86指令集的处理器芯片和Windows操作系统的服务器,如IBM的System x系列服务器、HP的Proliant 系列服务器等。 价格便宜、兼容性好、稳定性差、不安全,主要用在中小企业和非关键业务中。
从当前的网络发展状况看,以“小、巧、稳”为特点的x86架构的PC服务器得到了更为广泛的应用。
从理论定义来看,服务器是网络环境中的高性能计算机,它侦听网络上其它计算机(客户机)提交的服务请求,并提供相应的服务。为此,服务器必须具有承担服务并且保障服务质量的能力。
但是这样来解释仍然显得较为深奥模糊,其实服务器与个人电脑的功能相类似,均是帮助人类处理信息的工具,只是二者的定位不同,个人电脑(简称为Personal Computer,PC)是为满足个人的多功能需要而设计的,而服务器是为满足众多用户同时在其上处理数据而设计的。而多人如何同时使用同一台服务器呢?这只能通过网络互联,来帮助达到这一共同使用的目的。
我们再来看服务器的功能,服务器可以用来搭建网页服务(我们平常上网所看到的网页页面的数据就是存储在服务器上供人访问的)、邮件服务(我们发的所有电子邮件都需要经过服务器的处理、发送与接收)、文件共享&打印共享服务、数据库服务等。而这所有的应用都有一个共同的特点,他们面向的都不是一个人,而是众多的人,同时处理的是众多的数据。所以服务器与网络是密不可分的。可以说离开了网络,就没有服务器;服务器是为提供服务而生,只有在网络环境下它才有存在的价值。而个人电脑完全可以在单机的情况下完成主人的数据处理任务。
二:按应用层次划分
按应用层次划分通常也称为"按服务器档次划分"或"按网络规模"分,是服务器最为普遍的一种划分方法,它主要根据服务器在网络中应用的层次(或服务器的档次来)来划分的。要注意的是这里所指的服务器档次并不是按服务器CPU主频高低来划分,而是依据整个服务器的综合性能,特别是所采用的一些服务器专用技术来衡量的。按这种划分方法,服务器可分为:入门级服务器、工作组级服务器、部门级服务器、企业级服务器。
1、入门级服务器
这类服务器是最基础的一类服务器,也是最低档的服务器。随着PC技术的日益提高,现在许多入门级服务器与PC机的配置差不多,所以目前也有部分人认为入门级服务器与"PC服务器"等同。这类服务器所包含的服务器特性并不是很多,通常只具备以下几方面特性:
·有一些基本硬件的冗余,如硬盘、电源、风扇等,但不是必须的;
·通常采用SCSI接口硬盘,现在也有采用SATA串行接口的;
·部分部件支持热插拨,如硬盘和内存等,这些也不是必须的;
·通常只有一个CPU,但不是绝对,如SUN的入门级服务器有的就可支持到2个处理器的;
·内存容量也不会很大,一般在1GB以内,但通常会采用带ECC纠错技术的服务器专用内存。
这类服务器主要采用Windows或者NetWare网络操作系统,可以充分满足办公室型的中小型网络用户的文件共享、数据处理、Internet接入及简单数据库应用的需求。这种服务器与一般的PC机很相似,有很多小型公司干脆就用一台高性能的品牌PC机作为服务器,所以这种服务器无论在性能上,还是价格上都与一台高性能PC品牌机相差无几,如DELL最新的PowerEdge4000 SC的价格仅5808元,HP也有类似配置和价格的入门级服务器。
入门级服务器所连的终端比较有限(通常为20台左右),况且在稳定性、可扩展性以及容错冗余性能较差,仅适用于没有大型数据库数据交换、日常工作网络流量不大,无需长期不间断开机的小型企业。不过要说明的一点就是目前有的比较大型的服务器开发、生产厂商在后面我们要讲的企业级服务器中也划分出几个档次,其中最低档的一个企业级服务器档次就是称之为"入门级企业级服务器",这里所讲的入门级并不是与我们上面所讲的"入门级"具有相同的含义,不过这种划分的还是比较少。还有一点就是,这种服务器一般采用Intel的专用服务器CPU芯片,是基于Intel架构(俗称"IA结构")的,当然这并不是一种硬性的标准规定,而是由于服务器的应用层次需要和价位的限制。
2、工作组服务器
工作组服务器是一个比入门级高一个层次的服务器,但仍属于低档服务器之类。从这个名字也可以看出,它只能连接一个工作组(50台左右)那么多用户,网络规模较小,服务器的稳定性也不像下面我们要讲的企业级服务器那样高的应用环境,当然在其它性能方面的要求也相应要低一些。工作组服务器具有以下几方面的主要特点:
·通常仅支持单或双CPU结构的应用服务器(但也不是绝对的,特别是SUN的工作组服务器就有能支持多达4个处理器的工作组服务器,当然这类型的服务器价格方面也就有些不同了);
·可支持大容量的ECC内存和增强服务器管理功能的SM总线;
·功能较全面、可管理性强,且易于维护;
·采用Intel服务器CPU和Windows/NetWare网络操作系统,但也有一部分是采用UNIX系列操作系统的;
·可以满足中小型网络用户的数据处理、文件共享、Internet接入及简单数据库应用的需求。
工作组服务器较入门级服务器来说性能有所提高,功能有所增强,有一定的可扩展性,但容错和冗余性能仍不完善、也不能满足大型数据库系统的应用,但价格也比前者贵许多,一般相当于2~3台高性能的PC品牌机总价。
3、部门级服务器
这类服务器是属于中档服务器之列,一般都是支持双CPU以上的对称处理器结构,具备比较完全的硬件配置,如磁盘阵列、存储托架等。部门级服务器的最大特点就是,除了具有工作组服务器全部服务器特点外,还集成了大量的监测及管理电路,具有全面的服务器管理能力,可监测如温度、电压、风扇、机箱等状态参数,结合标准服务器管理软件,使管理人员及时了解服务器的工作状况。同时,大多数部门级服务器具有优良的系统扩展性,能够满足用户在业务量迅速增大时能够及时在线升级系统,充分保护了用户的投资。它是企业网络中分散的各基层数据采集单位与最高层的数据中心保持顺利连通的必要环节,一般为中型企业的首选,也可用于金融、邮电等行业。
部门级服务器一般采用IBM、SUN和HP各自开发的CPU芯片,这类芯片一般是RISC结构,所采用的操作系统一般是UNIX系列操作系统,现在的LINUX也在部门级服务器中得到了广泛应用。以前能生产部门级服务器的厂商通常只有IBM、HP、SUN、COMPAQ(现在也已并入HP)这么几家,不过现在随着其它一些服务器厂商开发技术的提高,现在能开发、生产部门级服务器的厂商比以前多了许多。国内也有好几家具备这个实力,如联想、曙光、浪潮等。当然因为并没有一个行业标准来规定什么样的服务器配置才能算得上部门级服务器,所以现在也有许多实力并不雄厚的企业也声称其拥有部门级服务器,但其产品配置却基本上与入门级服务器没什么差别,用户要注意了。
部门级服务器可连接100个左右的计算机用户、适用于对处理速度和系统可靠性高一些的中小型企业网络,其硬件配置相对较高,其可靠性比工作组级服务器要高一些,当然其价格也较高(通常为5台左右高性能PC机价格总和)。由于这类服务器需要安装比较多的部件,所以机箱通常较大,采用机柜式的。
4、企业级服务器
企业级服务器是属于高档服务器行列,正因如此,能生产这种服务器的企业也不是很多,但同样因没有行业标准硬件规定企业级服务器需达到什么水平,所以现在也看到了许多本不具备开发、生产企业级服务器水平的企业声称自己有了企业级服务器。企业级服务器最起码是采用4个以上CPU的对称处理器结构,有的高达几十个。另外一般还具有独立的双PCI通道和内存扩展板设计,具有高内存带宽、大容量热插拔硬盘和热插拔电源、超强的数据处理能力和群集性能等。这种企业级服务器的机箱就更大了,一般为机柜式的,有的还由几个机柜来组成,像大型机一样。企业级服务器产品除了具有部门级服务器全部服务器特性外,最大的特点就是它还具有高度的容错能力、优良的扩展性能、故障预报警功能、在线诊断和RAM、PCI、CPU等具有热插拨性能。有的企业级服务器还引入了大型计算机的许多优良特性,如IBM和SUN公司的企业级服务器。这类服务器所采用的芯片也都是几大服务器开发、生产厂商自己开发的独有CPU芯片,所采用的操作系统一般也是UNIX(Solaris)或LINUX。目前在全球范围内能生产高档企业级服务器的厂商也只有IBM、HP、SUN这么几家,绝大多数国内外厂家的企业级服务器都只能算是中、低档企业级服务器。企业级服务器适合运行在需要处理大量数据、高处理速度和对可靠性要求极高的金融、证券、交通、邮电、通信或大型企业。企业级服务器用于联网计算机在数百台以上、对处理速度和数据安全要求非常高的大型网络。企业级服务器的硬件配置最高,系统可靠性也最强。 [编辑本段]服务器硬件 其实说起来服务器系统的硬件构成与我们平常所接触的电脑有众多的相似之处,主要的硬件构成仍然包含如下几个主要部分:中央处理器、内存、芯片组、I/O总线、I/O设备、电源、机箱和相关软件。这也成了我们选购一台服务器时所主要关注的指标。
整个服务器系统就像一个人,处理器就是服务器的大脑,而各种总线就像是分布与全身肌肉中的神经,芯片组就像是脊髓,而I/O设备就像是通过神经系统支配的人的手、眼睛、耳朵和嘴;而电源系统就像是血液循环系统,它将能量输送到身体的所有地方。
对于一台服务器来讲,服务器的性能设计目标是如何平衡各部分的性能,使整个系统的性能达到最优。如果一台服务器有每秒处理1000个服务请求的能力,但网卡只能接受200个请求,而硬盘只能负担150个,而各种总线的负载能力仅能承担100个请求的话,那这台服务器得处理能力只能是100个请求/秒,有超过80%的处理器计算能力浪费了。
所以设计一个好服务器的最终目的就是通过平衡各方面的性能,使得各部分配合得当,并能够充分发挥能力。我们可以从这几个方面来衡量服务器是否达到了其设计目的;R:Reliability——可靠性;A:Availability——可用性;S:Scalability——可扩展性;U:Usability——易用性; M:Manageability——可管理性,即服务器的RASUM衡量标准。
由于服务器在网络中提供服务,那么这个服务的质量对承担多种应用的网络计算环境是非常重要的,承担这个服务的计算机硬件必须有能力保障服务质量。这个服务首先要有一定的容量,能响应单位时间内合理数量的服务器请求,同时这个服务对单个服务请求的响应时间要尽量快,还有这个服务要在要求的时间范围内一直存在。
如果一个WEB服务器只能在1分钟里处理1个主页请求,1个以外的其他请求必须排队等待,而这一个请求必须要3分钟才能处理完,同时这个WEB服务器在1个小时以前可以访问到,但一个小时以后却连接不上了,这种WEB服务器在现在的Internet计算环境里是无法想象的。
现在的WEB服务器必须能够同时处理上千个访问,同时每个访问的响应时间要短,而且这个WEB服务器不能停机,否则这个WEB服务器就会造成访问用户的流失。
为达到上面的要求,作为服务器硬件必须具备如下的特点:性能,使服务器能够在单位时间内处理相当数量的服务器请求并保证每个服务的响应时间;可靠性,使得服务器能够不停机;可扩展性,使服务器能够随着用户数量的增加不断提升性能。因此我们说不能把一台普通的PC作为服务器来使用,因为,PC远远达不到上面的要求。这样我们在服务器的概念上又加上一点就是服务器必须具有承担服务并保障服务质量的能力。这也是区别低价服务器和PC的差异的主要方面。
在信息系统中,服务器主要应用于数据库和Web服务,而PC主要应用于桌面计算和网络终端,设计根本出发点的差异决定了服务器应该具备比PC更可靠的持续运行能力、更强大的存储能力和网络通信能力、更快捷的故障恢复功能和更广阔的扩展空间,同时,对数据相当敏感的应用还要求服务器提供数据备份功能。而PC机在设计上则更加重视人机接口的易用性、图像和3D处理能力及其他多媒体性能。 [编辑本段]服务器内存 制约服务器性能的硬件条件中,内存可以说是重中之重!其性能和品质也是考核服务器产品的一个重要方面。可是对于服务器内存,相信由于大多数人接触不多,还是缺乏了解。本文主要给读者朋友回答两个方面的问题:何谓服务器内存?它与台式机的内存存在着什么本质的差别?
服务器内存重要性阐述
服务器运行着企业关键业务,一次内存错误导致的宕机将使数据永久丢失。本身内存作为一种电子器件,很容易出现各种错误。
因此,面临着企业事实的压力和本身的不足,各个厂商都早已积极推出自己独特的服务器内存技术,像HP的“在线备份内存”和热插拔镜像内存;IBM的ChipKill内存技术和热更换和热增加内存技术。而随着企业信息系统的扩展所需,内存的密度和容量也将会得到相应的发展。

⑧ 如何查看linux服务器的配置

1、首先,连接相应linux主机,进入到linux命令行状态下,等待输入shell指令。

热点内容
滑板鞋脚本视频 发布:2025-02-02 09:48:54 浏览:433
群晖怎么玩安卓模拟器 发布:2025-02-02 09:45:23 浏览:557
三星安卓12彩蛋怎么玩 发布:2025-02-02 09:44:39 浏览:744
电脑显示连接服务器错误 发布:2025-02-02 09:24:10 浏览:537
瑞芯微开发板编译 发布:2025-02-02 09:22:54 浏览:147
linux虚拟机用gcc编译时显示错误 发布:2025-02-02 09:14:01 浏览:240
java驼峰 发布:2025-02-02 09:13:26 浏览:652
魔兽脚本怎么用 发布:2025-02-02 09:10:28 浏览:538
linuxadobe 发布:2025-02-02 09:09:43 浏览:212
sql2000数据库连接 发布:2025-02-02 09:09:43 浏览:726