数控车床陀螺编程及图
1. 陀螺的G71编程的详细过程是什么
陀螺G71是CNC车床多次固定循环指令,与单次固定循环指令一样,可以用于必须重复多次加工才能加工到规定尺寸的典型工序。
2. 数控车床编程代码
M03 主轴正转
M03 S1000 主轴以每分钟1000的速度正转
M04主轴逆转
M05主轴停止
M10 M14 。M08 主轴切削液开
M11 M15主轴切削液停
M25 托盘上升
M85工件计数器加一个
M19主轴定位
M99 循环所以程式
G 代码
G00快速定位
G01主轴直线切削
G02主轴顺时针圆壶切削
G03主轴逆时针圆壶切削
G04 暂停
G04 X4 主轴暂停4秒
G10 资料预设
G28原点复归
G28 U0W0 ;U轴和W轴复归
G41 刀尖左侧半径补偿
G42 刀尖右侧半径补偿
G40 取消
G97 以转速 进给
G98 以时间进给
G73 循环
G80取消循环 G10 00 数据设置 模态
G11 00 数据设置取消 模态
G17 16 XY平面选择 模态
G18 16 ZX平面选择 模态
G19 16 YZ平面选择 模态
G20 06 英制 模态
G21 06 米制 模态
G22 09 行程检查开关打开 模态
G23 09 行程检查开关关闭 模态
G25 08 主轴速度波动检查打开 模态
G26 08 主轴速度波动检查关闭 模态
G27 00 参考点返回检查 非模态
G28 00 参考点返回 非模态
G31 00 跳步功能 非模态
G40 07 刀具半径补偿取消 模态
G41 07 刀具半径左补偿 模态
G42 07 刀具半径右补偿 模态
G43 17 刀具半径正补偿 模态
G44 17 刀具半径负补偿 模态
G49 17 刀具长度补偿取消 模态
G52 00 局部坐标系设置 非模态
G53 00 机床坐标系设置 非模态
G54 14 第一工件坐标系设置 模态
G55 14 第二工件坐标系设置 模态
G59 14 第六工件坐标系设置 模态
G65 00 宏程序调用 模态
G66 12 宏程序调用模态 模态
G67 12 宏程序调用取消 模态
G73 01 高速深孔钻孔循环 非模态
G74 01 左旋攻螺纹循环 非模态
G76 01 精镗循环 非模态
G80 10 固定循环注销 模态
G81 10 钻孔循环 模态
G82 10 钻孔循环 模态
G83 10 深孔钻孔循环 模态
G84 10 攻螺纹循环 模态
G85 10 粗镗循环 模态
G86 10 镗孔循环 模态
G87 10 背镗循环 模态
G89 10 镗孔循环 模态
G90 01 绝对尺寸 模态
G91 01 增量尺寸 模态
G92 01 工件坐标原点设置 模态
3. 陀螺仪原理示意图和公式
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 陀螺仪是在动态中保持相对跟踪状态的装置,由于其原理的复杂性,我们借助于图来看看陀螺仪的原理。
4. 盗梦空间的陀螺怎么用数控机床制作需要编程吗求大神帮忙看看
看样子是可以做。数控不编程车床能动吗?你是学数控车床的吗=-O这个东西估计对于实习生来说是难度很大的。还是从简单的开始吧!
5. 数控车床CK6136做的陀螺,用宇龙仿真系统操作时总提示错误,下面是我编的程序,大神帮忙看看哪里出错了。
你的程序都是圆弧有问题,第一个起点起z2,x0.
终点是x4z2这个不对后面的也是圆弧起点和终点的问题
6. 有没有陀螺仪的原理过程最好带图
一、引言
陀螺仪作为一种惯性测量器件,是惯性导航、惯性制导和惯性测量系统的核心部件,广泛应用于军事和民用领域。传统的陀螺仪体积大、功耗高、易受干扰,稳定性较差,最近美国模拟器件公司推出了一种新型速率陀螺芯片ADXRS,它只有7mm×7mm×3mm大小,采用BGA-32封装技术,这种封装至少要比任何其他具有同类性能的陀螺仪小100倍,而且功耗为30mW,重量仅0.5g,能够很好的克服传统陀螺仪的缺点。由ADXRS芯片组成的角速度检测陀螺仪能够准确的测量角速度,此外还可以利用该陀螺仪对角度进行测量,实验取得了良好的结果。
二、陀螺仪的原理和构造
ADXRS系列陀螺仪是由美国模拟器件公司制造,采用集成微电子机械系统(iMEMS)专利工艺和BIMOS工艺的角速度传感器,内部同时集成有角速率传感器和信号处理电路。与任何同类功能的陀螺仪相比,ADXRS系列陀螺仪具有尺寸小、功耗低、抗冲击和振动性好的优点。
1、科里奥利加速度
ADXRS系列陀螺仪利用科里奥利(Coriolis)加速度来测量角速度,科里奥利效应原理如图1所示。假设某人站在一个旋转平台的中心附近,他相对地面的速度用图1箭头的长度所示。如果移动到平台外缘的某一点,他相对地面的速度会增加,如图1较长的箭头所示。由径向速度引起的切向速度的速率增加,这就是科里奥利加速度。设角速度为w科里奥利加速度的一半,另一般来自径向速度的改变,二者总和为2wv旋转平台必须施加一个大小为2Mwv科里奥利加速度,并且该人将受到大小相等的反作用力。的力来产生。如果人的质量为M,该,平台半径为r,则切向速度为wr,如果以速度v沿径向r移动,将产生一个切向加速度wv,这仅是
陀螺仪通过使用一种类似于人在一个旋转平台移出或移入的谐振质量元件,利用科里奥利效应来测量角速度。图2示出了ADXRS系列陀螺仪完整的微机械结构,陀螺仪通过附着在谐振体上的电容检测元件测量谐振质量元件及其框架由于科里奥利效应产生的位移。这些电容检测元件都是由硅材料制成的横梁,它们与两组附着在基片上的静止硅横梁互相交叉,因而形成两个标称值相等的电容器。由角速度引起的位移在该系统内产生一个差分电容。如果弹簧的弹性系数为K2wv M。如果总电容为C2wv,它直接与该角速度成比例。这种关系的逼真度在实际应用中非常好,其线性误差小于0.1%。 MC/gK,硅横梁的间距为g,则差分电容为/K,那么反作用力造成的位移为
2、陀螺仪的构造以及电路的实现
ADXRS系列陀螺仪的外围尺寸为7mm×7mm×3mm,采用BGA-32封装技术,有ADXRS150和ADXRS300两种型号,它们的功能电路完全相同,唯一不同在于前者的量程为±150°/s,后者的量程为±300°/s。图3显示了ADXRS300的内部电路结构和外围电路,其中外围电路主要是电容和电阻组成。
引脚AVCC接5V电源电压,22nF的泵浦电容用于产生12V的泵浦电压以供部分电路使用。测得的角速度以电压形式在引脚RATEOUT输出,0°/s时输出电压为2.5V,RATEOUT与引脚SUMJ之间并联一个电阻RoutADXRS300的角速度响应带宽,-3dB频率由下式决定:和电容Cout,从而组成低通滤波器用于限制
fout = 1 / (2 π ? Rout ? Cout) (1)
内部电路的Rout180kΩ,可以从外部给RoutΩ//RextADXRS300的量程为±300°/s,可以在RATEOUT和SUMJ引脚之间给Rout300 kΩ的电阻可以使量程增大50%,但是这需要对电路重新调零,调零时在SUMJ引脚处外接一个电阻RnullRATEOUT的零点是2.5V,但角运动范围不对称时,按下式计算:到地或电源正极,对称角运动情况下并联一个电阻来增大量程,例如并联一个,从而调整角速率响应带宽。并联一个电阻Rext,使得Rout=180k为
Rnull = (2)
式中,Vnull0——未校正时零角速度的输出电压,
Vnull1——校正后所需的零点电压。
如果求得的Rnull5V电源上。为负值,则把电阻Rnull接地;为正值,接在
三、实验过程和测量结果
ADXRS300陀螺仪直接的用途就是做角速度测量仪,此外也可以用于测量物体旋转角度—对陀螺仪的输出结果积分,所得的数值即为角度。
本实验即用ADXRS300陀螺仪测量角度,通过ADXRS300角速度测量仪测量旋转物体的转动角速度(注意:陀螺仪可以以任何角度安装在旋转物体的任何地方,只要测量使陀螺仪旋转轴和所要测量的轴平行即可),再对角速度积分就是我们所要的角度了。根据此原理,先把陀螺仪的输出通过数据采集器送入PC机中,再用软件进行积分并最终显示结果。具体流程如图4。
1、硬件设计
测量角度的具体方法是把ADXRS300陀螺仪固定在由步进电机驱动的圆盘上,由圆盘带动陀螺仪转动,陀螺仪的输出电压由F-5101数据采集控制器进行A/D转换。F-5101的输入电压范围为-5V~5V,A/D转换位数为12位,转换速度为25ms,适用于本实验的数据采集。
F-5101通过打印口与计算机相连,占用主机378H和379H两个I/O端口。主机通过写378H向F-5101送入操作状态,读379H得到A/D转换的数据。
系统的供电电压为220V,需要通过AC220B05-1W5型电源模块把220V交流电转换为5V直流电供ADXRS300陀螺仪使用。
2、软件设计
读取陀螺仪的输出电压值,换算成角速度并进行积分,最终显示结果这一步骤通过Visual Basic程序来实现。从计算机379H端口读取的数值为12位2进制数,利用公式
Vout10× (A×16 + B + C / 16)×4096 – 5 (3)=
可以把12位二进制数转换为十进制数,从而求得陀螺仪的实际输出电压。其中Vout12位二进制数的高4位、中4位和低4位。电压值换算成角速度由下式决定:设角速度为w,则:为输出电压,A,B,C分别为
w = (Vout -V0) / 5mV /°/s (4)
其中5mV/°/s为ADXRS300陀螺仪的灵敏度,V2.5V。0为陀螺仪静止时的输出电压,一般为
积分的主要步骤是用角速度w5。乘以程序运行一次所用的时间△t,循环运行程序,对每次的乘积进行累加,并实时送出累加结果,该结果即为测得的物体转过的角度,程序流程如图
3、实验结果
表1列出了陀螺仪转动±90°和±180°这四种情况的输出结果。
实验结果表明:角度相对误差小于0.5%,有较高的精度。其中误差来源主要包括:
程序运行一次所用的时间△t过长,造成对角速度的积分不精确,这是产生误差的主要来源。解决的方法是尽量避免冗长的程序语句,使用运行速度较快的计算机或者采用更精确的算法。
数据采集A/D转换时可能产生的误差,造成所积分的角速度不准确。
7. 求数控车床陀螺程序 G71(工件直径30 直锥陀螺)
直锥?陀螺是锥度加直圆,整个都是锥度的是吊线头,砖工用的,你说的哪种?
8. 陀螺怎么用数控车床编程急!!!!
很简单,
T0101:
G00 X50 Z2.0:
G71 U2 R0.5:
G71 P1 Q2 U0W0 F0.3:
N1 GO X0:
G01X50 Z-30:
N2 Z-50:
G00 X300 Z2:
M30:
9. 求数控车床大神帮忙,求这个陀螺的G71编程的详细过程
G99;每转进给
M03S800;
T0101;
G00X35Z2;
G71U1.5R1.5;
G71P10Q100U0.1W0.05F0.3;
N10G00X0;
G1Z0F0.08;
G1X4Z-4F0.03;
G2X24Z-14R14;
G1X28F0.05;
G3X32Z-16R2
N100 G1Z-27F0.05;
G00X100Z100;
T0202;刀宽3MM。假设后面直径10长5
G00X35Z-23.05;
G1X10.05F0.08;
G0X35;
G0Z-25.5;
G1X10.05;
'G0X37;
G0Z-28.05;
G1X9.5;
G0X33;
G0Z-22.7;
G1X32;
G1Z-23,C0.2E0.03;
G1X10;
G1Z-28,C0.2E0.03;
G1X0.5;
G0X50;
G00X100Z100;
M30;