可编程彩灯控制器
1. 彩灯控制器是什么
彩灯控制器是一种通过控钮可以合成多种变幻的灯光闪烁, 应用到节日彩灯,舞厅灯,卡拉OK厅,酒吧,橱窗,家庭的装饰灯等等。
基本内容
彩灯控制器
该电路结构简单,取材容易,主要由掩膜固化IC主控,由可控硅BT136双输出300W控制电路。通过控钮可以合成多种变幻的灯光闪烁。
广泛应用到节日彩灯,舞厅灯,卡拉OK厅,酒吧,橱窗,家庭的装饰灯等等。
组成物件
彩灯控制器电路由电源电路和彩灯控制电路组成,如图1-151所示。电源电路由整流二极管VDl-VD4、限流电阻器Rl、稳压二极管VS和滤波电容器Cl组成。彩灯控制电路由计数器集成电路IC、电阻器肛-R13、电容器C2、可变电阻器RP、晶闸管VTl-VTlO和彩灯HLl-HLlO组成。为简化电路,图中IC的Q7-QlO端、Q12、Q13端(该集成电路无Ql-Q3和Qll端)和电阻器R7-Rl2、晶闸管VT4-VT9、彩灯HL4-HL9本画出。交流220V电压经VDl,VD4整流、Rl限流降压、VS稳压。
元器件选择
Rl选用lW金属膜电阻器;R2和R3选用1/2W金属膜电阻器或碳膜电阻器;R4选用l/4W碳膜电阻器。
RP选用合成膜可变电阻器。
Cl选用耐压值为630V的CBB电容器;C2-C7均选用耐压值为l6V的铝电解电容器。
VDl选用lN5406型硅整流二极管;VD2选用1N4007型硅整流二极管。
VS选用lW、4.7V的硅稳压二极管。
VTl-VW均选用600V、lA的晶闸管,例如MCRlO0-8等型号。若每路彩灯的功率大于100W,则应选用电流容量大一些的晶闸管。
Vl选用S8050型硅NPN晶体管;V2选用S8550型硅PNP晶体管。
BL选用0.5W、8Ω的电动式扬声器。
S选用小型动合按钮。本例介绍的彩灯控制器,采用SH-818型专用彩灯控制集成电路 (内储25首乐曲),能驱动4路彩灯,使之随音乐的节拍闪烁发光,并可变换多种灯光花样。
2. 可编程双色彩灯控制器的设计
可编程控制器简称PC(英文全称:Programmable Controller),它经历了可编程序矩阵控制器PMC、可编程序顺序控制器PSC、可编程序逻辑控制器PLC(英文全称:Programmable Logic Controller)和可编程序控制器PC几个不同时期。为与个人计算机(PC)相区别,现在仍然沿用可编程逻辑控制器这个老名字。1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”参考: www.schneider-electric.cn/sites/china/cn/solutions/business_segments/mining-minerals-metals/solutions-for-the-mining-instry/mes.page
3. 节日彩灯控制器的设计用C语言来编程,求程序!
程序大纲:
1.单片机初始化程序
2.主程序(把p1.1到p1.4写到存储器R1到R4)在用djnz R1,SUB1完成控制 以此类推
3.子程序
SUB1:此程序依次(加延时)设置彩灯所在脚为高电平
sub2 此程序设置彩灯所在脚为低电平
sub3 同sub1
sub4 sub1调转写
4. EDA课程设计:彩灯控制器
以前做的设计,粘贴时图形没出来,参考一下,记得给分啊
一.设计目的
1、学习EDA开发软件和MAX+plus Ⅱ的使用方法,熟悉可编程逻辑器件的使用,通过制作来了解彩灯控制系统。
2、进一步掌握数字电路课程所学的知识。
3、了解数字电路设计的一般思路,进一步解决和分析问题。
4、培养自己的编程和谨慎的学习态度
二、.设计题目内容和要求
(1)课题内容:
用EDA技术设计一个彩灯控制器,使彩灯(LED管)能连续发出三种以上不同的花型(自拟);
随着彩灯显示图案的变化,发出不同的音响声。
要求使用7段数码管显示当前显示的花型,如第一种花型显示A1,第二种花型显示b2,第三种花型显示C3
(2)主要任务:完成该系统的硬件和软件的设计,并利用实验箱制作出实物演示,调试好后并能实际运用(指导教师提供制作所需的器件),最后就课程设计本身提交一篇课程设计报告。
三、总体方案设计与选择
1 总体方案的设计
方案一:电路分为三个部分:彩灯花型模块、声音模块,时钟模块。用时钟控制声音和花型,整体使用相同的变量与信号,主体框图如下;
图三—1-1方案一的的流程图
方案二:电路分为五个模块:分频器模块、16进制计数器、4进制计数器,4选1选择器、彩灯控制器。其中彩灯控制器是用来输出不同的花样,彩灯控制器的输出则是用一个16进制的计数器来控制,扬声器的输出时用不同的频率来控制,所以用了一个集成分频器来使输入的频率被分为几种不同的频率,不同频率的选择性的输出则是用一个4选一的选择器来控制。整体框图如下:
图三—1-2方案二的流程图
2、方案的选择
方案一是将融合在一起,原理思路简单,元件种类使用少,但是在编程时要使用同一变量和信号,这样就会给编程带来很大的困难,另外中间单元连线较多,不容易检查,门电路使用较多,电路的抗干扰能力会下降。
方案二将彩灯花型控制与声音控制分开,各单元电路只实现一种功能,电路设计模块化,且编程时将工作量分开,出现错误时较容易检查,连线较少且容易组装和调试。
结合两个方案的优缺点,我选择容易编程、组装和调试的方案二。
四、模块电路的设计
1、分频器模块
设计要求显示不同的彩灯的时候要伴随不同的音乐,所以设计分频器来用不同的频率控制不同的音乐输出。
模块说明:
Rst:输入信号 复位信号 用来复位分频器的输出使输出为“0”,及没有音乐输出。
Clk:输入信号 模块的功能即为分频输入的频率信号。
Clk_4、clk8、clk_12、clk_16:输出信号 即为分频模块对输入信号clk的分频,分别为1/4分频输出、1/8分频输出、1/12分频输出、1/16分频输出。不同的频率会发出不同的声音。如图
图四-1分频器电路图
2、16进制计数器
16进制模块用来控制彩灯输出模块,即确定彩灯控制器的不同的输出。
Rst:输入信号 复位信号 用来复位16进制使其输出为“00000”,即彩灯不亮。
Clk1:输入信号 用来给模块提供工作频率。
Count_out[3..0]:输出信号 即为16进制计数器的输出,此输出信号作为彩灯的输入信号。
如图四-2
图四-2 16进制计数器电路图
3、4进制计数器模块
4进制计数器作为选择器的输入来控制选择器选择不同的频率作为输出控制扬声器工作。
Clk2:输入信号 来为计数器提供工作频率。
Rst:输入信号 复位信号 使计数器的输出为“00”。
如图四-3
图四-3 4进制计数器电路图
4、4选1选择器模块
Rst:输入信号复位信号使选择器的输出为“0”。
In1、in2、in3、in4:输入信号接分频器的输出。
Inp[1..0]:输入信号接4进制计数器的输出用来控制选择器的选择不同的输入选择不同的输出。
Output2:输出信号直接接扬声器即输出的是不同的频率来控制扬声器播放声音
如图四—4
图四—4 4选1选择器电路图
5、彩灯控制模块
彩灯控制采用的模式6来进行显示。
图四—5—1模式6结构图
彩灯控制模块用来直接控制彩灯的输出,使彩灯表现出不同的花样。
Rst:输入信号 使彩灯控制模块的输出为“00000000”,即让彩灯无输出。
Input[4..0]:输入信号 不同的输入使彩灯控制模块有不同的输出即彩灯显示出不同的花样。
Output3[7..0]:输出信号 直接与数码管相连来控制数码管。
如图四—5—2
图四-5-2 彩灯控制电路图
五、EDA设计与仿真
1、源程序:
----------------------------------------------分频器模块-----------------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYfenpinqi IS
PORT
(
clk2,rst :IN std_logic;
clk_12,clk_4,clk_16,clk_8 : OUT std_logic
);
ENDfenpinqi;
ARCHITECTUREcd OF fenpinqi IS
begin
p1:process(clk2,rst)
variable a:integer range 0 to 20;
begin
if rst='1' then
clk_4<='0'; ----- 复位信号控制部分
else
if clk2'event and clk2='1'then
if a>=3 then
a:=0;
clk_4<='1';
else
a:=a+1;
clk_4<='0';
end if;
end if;
end if;
endprocess p1;
p2:process(clk2,rst)
variable b:integer range 0 to 20;
begin
if rst='1' then
clk_16<='0'; ----- 复位信号控制部分
else
if clk2'event and clk2='1'then
if b>=15 then
b:=0;
clk_16<='1';
else
b:=b+1;
clk_16<='0';
end if;
end if;
end if;
endprocess p2;
p3:process(clk2,rst)
variable c:integer range 0 to 20;
begin
if rst='1' then
clk_8<='0'; ----- 复位信号控制部分
else
if clk2'event and clk2='1'then
if c>=7 then
c:=0;
clk_8<='1';
else
c:=c+1;
clk_8<='0';
end if;
end if;
end if;
endprocess p3;
p4:process(clk2,rst)
variable d:integer range 0 to 40;
begin
if rst='1' then
clk_12<='0'; ----- 复位信号控制部分
else
if clk2'event and clk2='1'then
if d>=11 then
d:=0;
clk_12<='1';
else
d:=d+1;
clk_12<='0';
end if;
end if;
end if;
endprocess p4;
endcd;
----------------------------------------------4选1选择器---------------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYxzq4_1 IS
PORT
(
rst:in std_logic;
inp:in integer range 0 to 3;
in1,in2,in3,in4 : In std_logic;
output2 :OUT std_logic
);
ENDxzq4_1;
ARCHITECTUREa OF xzq4_1 IS
BEGIN
PROCESS (rst,inp)
BEGIN
if(rst='1') then output2<='0';
else
case inp is
when 0=>output2<=in1;
when 1=>output2<=in2;
when 2=>output2<=in3;
when 3=>output2<=in4;
when others=>null;
end case;
end if;
END PROCESS;
ENDa;
-------------------------------------------彩灯控制模块----------------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYcaideng IS
PORT
(
input :
IN INTEGER RANGE
0 TO 15;
rst:in std_logic;
output3 :OUT std_logic_vector(7 downto 0);
sm :out std_logic_vector(6 downto 0)
);
ENDcaideng;
ARCHITECTUREa OF caideng IS
BEGIN
PROCESS (input)
BEGIN
if rst='1' thenoutput3<="00000000";sm<="0000000";
else
case input is
when 0=>output3<="00111000";sm<="0000110";
when1=>output3<="00001111";sm<="0000110";
when2=>output3<="00111110";sm<="0000110";
when3=>output3<="01111111";sm<="0000110";
when4=>output3<="01011011";sm<="1011011";
when5=>output3<="01110110";sm<="1011011";
when6=>output3<="00001111";sm<="1011011";
when7=>output3<="01111111";sm<="1011011";
when8=>output3<="01101101";sm<="1001111";
when9=>output3<="00000111";sm<="1001111";
when10=>output3<="01110111";sm<="1001111";
when11=>output3<="01111011";sm<="1001111";
when12=>output3<="00111000";sm<="1100110";
when13=>output3<="00111111";sm<="1100110";
when14=>output3<="00111110";sm<="1100110";
when 15=>output3<="01111001";sm<="1100110";
when others=>null;
end case;
end if;
end process;
end a;
--------------------------------------------16进制计数器模块-----------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYcounter_16 IS
PORT
(
clk,rst :IN std_logic;
count_out :
OUT INTEGER RANGE
0 TO 15);
ENDcounter_16;
ARCHITECTUREa OF counter_16 IS
BEGIN
PROCESS (rst,clk)
variable temp:integer range 0 to 16;
BEGIN
IF rst='1' THEN
temp:=0;
ELSIF (clk'event and clk='1') THEN
temp:=temp+1;
if(temp=15) then
temp:=0;
end if;
END IF;
count_out<=temp;
END PROCESS;
ENDa;
-------------------------------4进制计数器模块----------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYcounter_4 IS
PORT
(
clk,rst :IN std_logic;
count_out :OUT integer range 0 to 3 );
ENDcounter_4;
ARCHITECTUREa OF counter_4 IS
BEGIN
PROCESS (rst,clk)
variable temp:integer range 0 to 16;
BEGIN
IF rst='1' THEN
temp:=0;
ELSIF (clk'event and clk='1') THEN
temp:=temp+1;
if(temp=4) then
temp:=0;
end if;
END IF;
count_out<=temp;
END PROCESS;
ENDa;
-------------------------------------------主程序----------------------------------
LIBRARYieee;
USEieee.std_logic_1164.all;
ENTITYproject IS
PORT (clk1,rst,clk2: IN std_logic;
Out1: OUT std_logic_vector(7 downto 0);
Out2 :out std_logic_vector(6 downto0);
Out3: OUT std_logic);
ENDproject;
ARCHITECTUREstruct OF project IS
COMPONENT counter_16 IS
PORT(clk,rst : IN std_logic;
count_out : OUT integer range 0 to 15 );
ENDCOMPONENT;
COMPONENT fenpinqi IS
PORT(clk2,rst : IN std_logic;
clk_12,clk_4,clk_16,clk_8 : OUT std_logic);
END COMPONENT ;
COMPONENT counter_4 IS
PORT(clk,rst :IN std_logic;
count_out :OUT integer range 0 to 3 );
ENDCOMPONENT;
COMPONENT xzq4_1 IS
PORT
(
rst:in std_logic;
inp:in integer range 0 to 3;
in1,in2,in3,in4 : In std_logic;
output2 :OUT std_logic
);
ENDCOMPONENT;
COMPONENT caideng IS
PORT
(
input: IN INTEGER RANGE 0 TO 15;
rst:in std_logic;
output3 :OUT std_logic_vector(7 downto 0);
sm :out std_logic_vector(6 downto 0)
);
ENDCOMPONENT;
SIGNALu: integer range 0 to 15;
SIGNALw: integer range 0 to 3;
SIGNALv1,v2,v3,v4: std_logic;
BEGIN
U1:counter_16PORT MAP(clk1,rst,u);
U2:fenpinqiPORT MAP(clk2,rst, v1,v2,v3,v4);
U3:counter_4PORT MAP(v3,rst,w);
U4:xzq4_1 PORT MAP(rst,w, v1,v2,v3,v4,out3);
U5:caidengPORT MAP(u,rst,out1,out2);
ENDstruct;
2、彩灯控制器仿真结果及数据分析
分析:如上图,clk1控制的是彩灯模块,clk2控制的是声音模块,当rst为高电平是输出全为0,ck1每出现四个高电平,花型发生一次变化,out2分别显示1、2、3、4,out1显示不同的花型,out3发出声音,如图脉冲数不同表示发出的声音不同,但是声音与花型相比有一定的延迟。
六、硬件实现
1、引脚锁定图
2、硬件仿真图
显示第一组花型之一
显示第二组花型之一
显示第三组花型之一
显示的第四组花型之一
七、总体电路
整个系统就是各个分模块组成来实现最后的彩灯控制功能,系统又两个时钟来控制一个是控制16进制计数器即控制彩灯控制模块来实现彩灯的不同输出,另一个时钟为分频器的输入来进行分频处理,最后用来控制扬声器发出不同的音乐,为了使效果明显尽量达到要求分频处理的时钟的频率比实现彩灯控制的时钟频率要高。
将各个模块连在一起采用在课程中学到的元件例化,将各个模块的引脚连在一起,使之成为一个整体。元件例化是VHDL设计实体构自上而下层次化设计的重要途径。整体电路如图五—1
图七—1 整体电路图
八、心得体会
1、在设计时遇到一些主要问题如下:怎么将各个模块连在一起、开始硬件仿真时总是出现错误,设计方案的选择。最后我选择了元件例化将各个模块连在一起,仿真时是因为短路帽接错了,当时没有注意,在方案的选择时我们选了实现比较简单的分模块方案
2、这次的EDA课程设计我学到得东西很多明白了理论与实践之间的差距,而且对DEA课程有了更深入的理解,尤其是知道了怎么去应用所学的知识,怎么去利用网络实现自己的要求,具体体会如下:
(1)要想完成编程就要对DEA知识很熟悉,这样才能加快编程的速度,另外在编程时一定要小心,稍微有一点粗心都会有很多的错误出现,在出现错误后要学会寻找错误原因如名称前后不一、数据类型不同、符号写错等等
(2)拿道题目后要注意分析,要学会总体把握,然后再一一一细化、学会将复杂的问题简单化,分析时一定要有一个明确的目标。
(3)要学会理论联系实际,在程序导入到实验箱后,居然不显示结果,认真的检查看看操作是否有错误、试验箱中该短路的是否已用短路帽短路、又重新检查了一下程序,结果发现是短路帽接错了,所以看似很简单的操作自己操作起来可能会有很大的漏洞,所以亲自动手是很重要的。
(4)当自己的只是有限时,要注意运用网络等一切资源,要学会知识的灵活运用在查阅的过程中学到了很多在书本所没有学到的知识,通过查阅相关资料进一步加深了对EDA的了解
总的来说,通过这次课程设计不仅锻炼了我们的动手和动脑能力,也使我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,要把所学的理论知识与实践相结合起来,才能提高自己的实际动手能力和独立思考的能力。还有最重要的一点就是要有一丝不苟的精神和端正认真的态度,遇到困难后要学会积极的面对。
3、在此设计中声音会有一定的延迟,可以考虑用花型输出信号作为4选1的控制信号
九、参考书目:
赵伟军,《Protel99se教程》,北京,人民邮电出版社,1996年
金西,《VHDL与复杂数字系统设计》,西安,西安电子科技大学出版社,2003
汉泽西,《EDA技术及其应用》,北京,北京航空航天大学出版社,2004
[4] 黄任,《VHDL入门.解惑.经典实例.经验总结》,北京,北京航空航天大学出版社,2005
[5] 李洋,《EDA技术 使用教程》,北京,机械工业出版社,2009
[6] 网络资源:EDA课程设计、EDA课程设计—彩灯控制器等
5. 。plc制作彩灯控制器
苏 州 市 职 业 大 学
课程设计说明书
名称 彩灯循环点亮的PLC控制
07年6月25日至07年6月29日共1周
院 系 计算机工程系
班 级 04计算机—机电
姓 名 孙言江
系 主 任 宣仲良
教研室主任 刘文芝
指导教师 严俊高
目录
一、概述 6
二、硬件设计要求 6
1、控制要求 .6
2、系统设计流程示意图 .6
3、I/O分配 .6
4、I/O接线图 .8
三、软件设计要求 8
1、系统设计梯形图 .8
2、系统设计指令表 .10
四、系统调试 10
硬件调试 .10
软件调试 .10
运行调试 .11
五、设计心得: 11
六、参考文献 11
一、概述:
随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已扩展到所有的控制领域。现代社会要求制造业对市场需求迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品。为了满足这一需求,生产设备的控制系统必须具有极高的灵活性和可靠性,可编程控制器就顺应而生。
利用PLC可编程控制器,三菱FX2N-48MR可编程控制器进行彩灯循环点亮的PLC控制的编程。
二、硬件设计要求:
1、控制要求为:三盏彩灯HL1、HL2、HL3、HL4、HL5、HL6、HL7,按下启动按钮后HL1、HL2、HL3亮,1S后HL1灭HL2、HL3、HL4亮,1S后HL2灭HL3、HL4、HL5亮,1S后HL3灭HL4、HL5、HL6亮,1S后HL4灭HL5、HL6、HL7亮,1S后HL1、HL2、HL3、HL4全亮,1S后HL1、HL2、HL3、HL4、HL5、HL6、HL7全灭, 1S后HL1、HL2、HL3亮…………如此循环直至记数的次数到;随时按停止按钮停止系统运行。
2、系统设计流程示意图如下图1:
3、I/O分配:
输入端口 输出端口
启动按钮SB0 X0 HL1 Y1
停止按钮SB1 X1 HL2 Y2
HL3 Y3
HL4 Y4
HL5 Y5
HL6 Y6
HL7 Y7
图1:流程示意图
4、I/O接线图:
图2 :I/O接线图
三、软件设计要求:
1、系统设计梯形图:
图3:梯形图
2、系统设计指令表:
四、系统调试:
硬件调试:接通电源,检查三菱FX2N-48MR可编程控制器是否可以正常工作,接头是否接触良好,然后把其与电脑的通信口连接。
软件调试:按要求输入梯形图,转换成指令表,并进行语法的检查,正确后设置正确的通信口,将指令读入到指定的可编程控制器ROM中,进行下一步的调试。
运行调试:在硬件调试和软件调试正确的基础上,打开三菱FX2N-48MR可编程控制器的“RUN”开关进行调试;观察运行的情况,看是否是随时按下停止按钮可以停止系统运行,或者等待100个脉冲后,系统是否停止运行。
根据以上的调试情况,本彩灯循环点亮的PLC控制系统设计符合要求。
五、设计心得:
通过这次对彩灯循环点亮的PLC控制,让我了解了plc梯形图、指令表、外部接线图有了更好的了解,也让我了解了关于PLC设计原理。有很多设计理念来源于实际,从中找出最适合的设计方法。
虽然本次课程设计是要求自己独立完成,但是,彼此还是脱离不了集体的力量,遇到问题和同学互相讨论交流。多和同学讨论。我们在做课程设计的过程中要不停的讨论问题,这样,我们可以尽可能的统一思想,这样就不会使自己在做的过程中没有方向,并且这样也是为了方便最后设计和在一起。讨论不仅是一些思想的问题,还可以深入的讨论一些技术上的问题,这样可以使自己的处理问题要快一些,少走弯路。多改变自己设计的方法,在设计的过程中最好要不停的改善自己解决问题的方法,这样可以方便自己解决问题
6. 彩灯的控制器应该怎去接呢
彩灯控制器是一种元器件,主要由掩膜固化IC主控,由可控硅BT136双输出300W控制电路。
高压型LED产品控制器:高压型LED产品设计电压是交流/直流220V电压,每个回路LED数量36-48个串联,每个回路电流20mA以下,限流方式有两种,一种是电阻限流,这种方式电阻功耗较大,建议使用每4个LED串接一个1/4W金属模电阻,均匀分布散热,这种接法是最稳定可靠;另一种是电阻电容串联限流,这种接法大部分电压降在电容上,电阻功耗小,只能用在稳定的长亮状态,如果闪动电容储能,反而电压加倍,LED容易损坏。凡是使用控制器的LED必须使用电阻限流方式,LED一般每个回路一米,功率5W,三色功率每米15W。常用渐变控制器NE112K控制直流1200W,NE103D交流负载4500W直流负载1500W,如果灯管闪动单元多就使用NE112K,如果只需要整体闪动就使用NE103D。如果使用渐变方式,要注意负载匹配,霓虹灯和LED的发光分布特性不一样,同一回路不能混接不同类型的负载。
7. 求助可编程彩灯控制器的设计
用PLC做,建议你自己认真做,过程对你的好处很大。
8. led彩灯控制器的原理是什么
led七彩灯的工作原理:变色灯是由红(R)、绿(G)、蓝(B)三基色LED组成的。双色LED是我们十分熟悉的。一般由红光LED及绿光LED组成。它可以单独发出红光或绿光。若红光及绿光同时亮点时,红绿两种光混合成橙黄色。变色灯的变色原理是通过三种基色LED分别点亮两个LED时,它可以发出黄、紫、青色(如红蓝两LED点亮时发出紫色光)若红绿蓝三种LED同时点亮时,它会产生白光。如果有电路能使红绿、蓝光LED分别两两点亮、单独点亮及三基色 LED同时点亮,则他就能发出七种不同颜色的光来,于是就出现了七彩LED灯的这种现象。
9. 可编程彩灯控制器
1、显示驱动可采用逐行逐列动态扫描方式 2、用两个定时器控制点亮与熄灭 3、各种图案可通过串口下载 4、最好用08接口的LED通用单元板
10. 急求!!!!用PLC制作彩灯控制器!!
苏 州 市 职 业 大 学
课程设计说明书
名称 彩灯循环点亮的PLC控制
07年6月25日至07年6月29日共1周
院 系 计算机工程系
班 级 04计算机—机电
姓 名 孙言江
系 主 任 宣仲良
教研室主任 刘文芝
指导教师 严俊高
目录
一、概述 6
二、硬件设计要求 6
1、控制要求 .6
2、系统设计流程示意图 .6
3、I/O分配 .6
4、I/O接线图 .8
三、软件设计要求 8
1、系统设计梯形图 .8
2、系统设计指令表 .10
四、系统调试 10
硬件调试 .10
软件调试 .10
运行调试 .11
五、设计心得: 11
六、参考文献 11
一、概述:
随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已扩展到所有的控制领域。现代社会要求制造业对市场需求迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品。为了满足这一需求,生产设备的控制系统必须具有极高的灵活性和可靠性,可编程控制器就顺应而生。
利用PLC可编程控制器,三菱FX2N-48MR可编程控制器进行彩灯循环点亮的PLC控制的编程。
二、硬件设计要求:
1、控制要求为:三盏彩灯HL1、HL2、HL3、HL4、HL5、HL6、HL7,按下启动按钮后HL1、HL2、HL3亮,1S后HL1灭HL2、HL3、HL4亮,1S后HL2灭HL3、HL4、HL5亮,1S后HL3灭HL4、HL5、HL6亮,1S后HL4灭HL5、HL6、HL7亮,1S后HL1、HL2、HL3、HL4全亮,1S后HL1、HL2、HL3、HL4、HL5、HL6、HL7全灭, 1S后HL1、HL2、HL3亮…………如此循环直至记数的次数到;随时按停止按钮停止系统运行。
2、系统设计流程示意图如下图1:
3、I/O分配:
输入端口 输出端口
启动按钮SB0 X0 HL1 Y1
停止按钮SB1 X1 HL2 Y2
HL3 Y3
HL4 Y4
HL5 Y5
HL6 Y6
HL7 Y7
图1:流程示意图
4、I/O接线图:
图2 :I/O接线图
三、软件设计要求:
1、系统设计梯形图:
图3:梯形图
2、系统设计指令表:
四、系统调试:
硬件调试:接通电源,检查三菱FX2N-48MR可编程控制器是否可以正常工作,接头是否接触良好,然后把其与电脑的通信口连接。
软件调试:按要求输入梯形图,转换成指令表,并进行语法的检查,正确后设置正确的通信口,将指令读入到指定的可编程控制器ROM中,进行下一步的调试。
运行调试:在硬件调试和软件调试正确的基础上,打开三菱FX2N-48MR可编程控制器的“RUN”开关进行调试;观察运行的情况,看是否是随时按下停止按钮可以停止系统运行,或者等待100个脉冲后,系统是否停止运行。
根据以上的调试情况,本彩灯循环点亮的PLC控制系统设计符合要求。
五、设计心得:
通过这次对彩灯循环点亮的PLC控制,让我了解了plc梯形图、指令表、外部接线图有了更好的了解,也让我了解了关于PLC设计原理。有很多设计理念来源于实际,从中找出最适合的设计方法。
虽然本次课程设计是要求自己独立完成,但是,彼此还是脱离不了集体的力量,遇到问题和同学互相讨论交流。多和同学讨论。我们在做课程设计的过程中要不停的讨论问题,这样,我们可以尽可能的统一思想,这样就不会使自己在做的过程中没有方向,并且这样也是为了方便最后设计和在一起。讨论不仅是一些思想的问题,还可以深入的讨论一些技术上的问题,这样可以使自己的处理问题要快一些,少走弯路。多改变自己设计的方法,在设计的过程中最好要不停的改善自己解决问题的方法,这样可以方便自己解决问题
六、参考文献:
[1]廖常初. PLC基础及应用.北京:机械工业出版社
[2]史国生. 电气控制与可编程控制器技术.北京:化学工业出版社,2003
[3]孙振强. 可编程控制器原理及应用教程.北京:清华大学出版社
[4]阮友德. 电气控制与PLC实训教程.北京:人民邮电出版社,2006