当前位置:首页 » 编程软件 » 编译与位置无关

编译与位置无关

发布时间: 2022-04-19 15:11:35

① 为什么我的java程序在cmd下编译通过了而在Eclipse下编译不通过

为什么eclipse创建项目不要用jre,需要用jdk

② 什么是 CORBA 。

CORBA(Common Object Request Broker Architecture公共对象请求代理体系结构)是由OMG组织制订的一种标准的面向对象应用程序体系规范。或者说 CORBA体系结构是对象管理组织(OMG)为解决分布式处理环境(DCE)中,硬件和软件系统的互连而提出的一种解决方案;OMG组织是一个国际性的非盈利组织,其职责是为应用开发提供一个公共框架,制订工业指南和对象管理规范,加快对象技术的发展。

OMG组织成立后不久就制订了OMA(Object Management Architecture,对象管理体系结构)参考模型,该模型描述了OMG规范所遵循的概念化的基础结构。OMA由对象请求代理ORB、对象服务、公共设施、域接口和应用接口这几个部分组成,其核心部分是对象请求代理ORB(Object Request Broker)。对象服务是为使用和实现对象而提供的基本服务集合;公共设施是向终端用户应用程序提供的一组共享服务接口;域接口是为应用领域服务而提供的接口;应用接口是由开发商提供的产品,用于它们的接口,不属于OMG标准的内容。ORB提供了一种机制,通过这种机制,对象可以透明的发出请求和接收响应。分布的、可以互操作的对象可以利用ORB构造可以互操作的应用。

CORBA标准由对象管理组织(OMG)设立并进行控制,CORBA定议了一系列API,通信协议,和物件/服务信息模型用于使得异质应用程序能够互相操作,这些应用程序用不同的程序语言编写,运行在不同的平台上。CORBA因此为定义明确的物件提供了平台和位置的透明性,这些物件是分布式计算平台的基础。

CORBA分布计算技术,是由绝大多数分布计算平台厂商所支持和遵循的系统规范技术,具有模型完整、先进,独立于系统平台和开发语言,被支持程度广泛的特点,已逐渐成为分布计算技术的标准。COBRA标准主要分为3个层次:对象请求代理、公共对象服务和公共设施。最底层是对象请求代理ORB,规定了分布对象的定义(接口)和语言映射,实现对象间的通讯和互操作,是分布对象系统中的"软总线";在ORB之上定义了很多公共服务,可以提供诸如并发服务、名字服务、事务(交易)服务、安全服务等各种各样的服务;最上层的公共设施则定义了组件框架,提供可直接为业务对象使用的服务,规定业务对象有效协作所需的协定规则。

CORBA(公共对象请求代理架构):这是个和微软com,com+齐名的同类软件技术规范,由OMT提出。
用于在不同进程(程序)之间,甚至是不同物理机器上的进程(程序)之间通讯。底层技术依靠RPC[远程过程调用]实现。
面向对象的软件,以数据为中心设计,对象类既具有模块的封装性和类属等特性,还具有继承特性
,极大地提高了类的可扩充性和可再用能力。对象类较之于传统软件的功能模块而另具有的优点是:
(1)易于理解,具有完整的语义特征;
(2)易于扩充和修改,具有较高的通用性和适应性;
(3)易于构造组装,具有规范的外部接口。
开发应用组件必须遵循标准,以保证软件组件的互操作性,只有遵循统一的标准,不同厂商的、不同时期的、不同程序设计风格的、不同编程语言的、不同操作系统的、不同平台上的软件或软件部件才能进行交流与合作。为此,OMG(ObjectManageGroup)提供了一个对象标准CORBA,它定义了一个网连对象的接口,使得对象可以同时工作。基于CORBA的对象请求代理ORB为客户机/服务器开发提供了中间件的新格式。
作为OMG成员的微软公司撇开CORBA而另辟了COM(ComponetObjectModel),即组件对象模型,并把COM定位成基于对象的软件开发模型,尽管COM被认为是微软鼓噪出来的技术,但支持COM的开发工具却不断增多,其中大部分来自于微软,包括VisualBasic和VisualC ++。
公共对象请求代理结构:CORBA标准
全球性网络使线上的所有设备和软件成为全球共享的浩瀚的资源,计算机环境也从集中式发展到分布式环境,开放式系统的发展使用户能够透明地应用由不同厂商制造的不同机型不同平台所组成的异构型计算资源,因此,分布式处理和应用集成自然而然地成为人们的共同要求,那么什么是分布式处理和应用集成呢?它们的功能和关键技术是什么呢?简单地讲,分布式处理和应用集成就是指在异构的、网络的、物理性能差别很大的、不同厂商的、不同语言的信息资源的基础上构建信息共享的分布式系统,并且能够有效地进行应用系统和分布式处理的集成。分布式处理的关键在于定义可管理的软件构件,即面向对象技术中的“对象”。应用集成的关键在于为跨平台、跨机种、跨编程语言的产品提供统一的应用接口。OMG组织针对当今信息产业的要求,公布了CORBA标准,即公共对象请求代理体系结构(Common Object Request Broker Architecture),这是一个具有互操作性和可移植性的分布式面向对象的应用标准。
CORBA的核心是对象请求代理ORB,它提供对象定位、对象激活和对象通讯的透明机制。客户发出要求服务的请求,而对象则提供服务,ORB把请求发送给对象、把输出值返回给客户。ORB的服务对客户而言是透明的,客户不知道对象驻留在网络中何处、对象是如何通讯、如何实现以及如何执行的,只要他持有对某对象的对象引用,就可以向该对象发出服务请求。
CORBA允许用户以两种不同的方式提出对象请求:
1)静态调用:
通过给定接口的存根,在编译了对象代码后,进入客户端的程序。因此,静态调用必须在编译时就知道对象及其类型。
2)动态调用:
通过ORB的动态调用接口DII,在运行时生成访问对象的代码。
不管客户以哪一种形式提出请求,ORB的任务是:找出所要对象的位置,激活该对象,向对象传递此请求。对象执行所请求的服务后,把输出值返回给ORB,然后再由ORB返回给客户。
CORBA的重要概念是:
1.对象连接
CORBA广泛地支持对象的实现,在单服务器系统中也可以实现由接口定义语言定义的接口。ORB的灵活性既可以直接集成已有的应用,又不会使新对象受某些原则的制约。
对象连接提供了有不同类型对象实现时,使用ORB服务的方法,服务包括:对象引用、方法调用、安全控制、对象实现的激活与静候等。
2.接口定义语言(IDL)
CORBA用IDL来描述对象接口,IDL是一种说明性语言,它的语法类似于C++。
IDL提供的数据类型有:基本数据类型、构造类型、模板类型、和复合类型、操作说明。这些类型可以用来定义变元的类型和返回类型,操作说明则可以用来定义对象提供的服务。
IDL还提供模块构造,其中可以包含接口,而接口是IDL各类型中最重要的,它除了描述CORBA对象以外,还可以用作对象引用类型。
IDL提供了接口继承性,派生接口可以继承其基类接口所定义的操作与类型。IDL的接口继承性有其特殊性,此处不赘述。
总之,CORBA的IDL是一种说明性语言,描述面向对象系统开发所遵循的接口与实现相分离的基本原则。
3.动态调用接口
把IDL说明编译成面向对象程序设计语言的实代码后,客户可以调用已知对象的操作。在某些应用中,用户并不了解应用接口编译信息,但也要求调用对象的操作,这时就要动态调用接口来调用用户的操作了。例如,图形用户接口应支持用户浏览接口公共库,以获得每个对象所支持的操作信息,用户可根据自己的需求从浏览对象中挑选出所需的对象操作,具体的对象操作的调用实际上是用动态调用接口来完成的。
4.接口公用库
接口公用库持久地存储IDL的接口说明,借助于接口公用库,可以实现对象继承性层次结构的导航,并且提供了有关对象支持的所有操作的描述。接口公用库最常见的功能是为接口浏览器提供信息,帮助应用开发者找出潜在的可重用的软件部件。ORB可以利用接口公用库检查运行时的操作参数类型,但接口公用库的基本功能是提供类型信息,为动态调用接口发送请求提供信息支持。

java 2是sun公司提供的现在更明为java EE 企业级的应用开发,是一种跨平台的语言,
.NET平台是微软件提代的一种跨语言的的编程语言.

③ 如何设置NDK的编译选项

1. 概述

首先回顾一下 Android NDK 开发中,Android.mk 和Application.mk 各自的职责。

Android.mk,负责配置如下内容:

(1) 模块名(LOCAL_MODULE)

(2) 需要编译的源文件(LOCAL_SRC_FILES)

(3) 依赖的第三方库(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES)

(4) 编译/链接选项(LOCAL_LDLIBS、LOCAL_CFLAGS)

Application.mk,负责配置如下内容:

(1) 目标平台的ABI类型(默认值:armeabi)(APP_ABI)

(2) Toolchains(默认值:GCC 4.8)

(3) C++标准库类型(默认值:system)(APP_STL)

(4) release/debug模式(默认值:release)

由此我们可以看到,本文所涉及的编译选项在Android.mk和Application.mk中均有出现,下面我们将一个个详细介绍。

2. APP_ABI

ABI全称是:Application binary interface,即:应用程序二进制接口,它定义了一套规则,允许编译好的二进制目标代码在所有兼容该ABI的操作系统和硬件平台中无需改动就能运行。(具体的定义请参考网络或者维基网络)

由上述定义可以判断,ABI定义了规则,而具体的实现则是由编译器、CPU、操作系统共同来完成的。不同的CPU芯片(如:ARM、Intel x86、MIPS)支持不同的ABI架构,常见的ABI类型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。

这就是为什么我们编译出来的可以运行于Windows的二进制程序不能运行于Mac OS/linux/Android平台了,因为CPU芯片和操作系统均不相同,支持的ABI类型也不一样,因此无法识别对方的二进制程序。

而我们所说的“交叉编译”的核心原理也跟这些密切相关,交叉编译,就是使用交叉编译工具,在一个平台上编译生成另一个平台上的二进制可执行程序,为什么可以做到?因为交叉编译工具实现了另一个平台所定义的ABI规则。我们在Windows/Linux平台使用Android NDK交叉编译工具来编译出Android平台的库也是这个道理。

这里给出最新 Android NDK 所支持的ABI类型及区别:

下面是我总结的一些常用的CFLAGS编译选项:

(1)通用的编译选项

-O2 编译优化选项,一般选择O2,兼顾了优化程度与目标大小

-Wall 打开所有编译过程中的Warning

-fPIC 编译位置无关的代码,一般用于编译动态库

-shared 编译动态库

-fopenmp 打开多核并行计算,

-Idir 配置头文件搜索路径,如果有多个-I选项,则路径的搜索先后顺序是从左到右的,即在前面的路径会被选搜索

-nostdinc 该选项指示不要标准路径下的搜索头文件,而只搜索-I选项指定的路径和当前路径。

--sysroot=dir 用dir作为头文件和库文件的逻辑根目录,例如,正常情况下,如果编译器在/usr/include搜索头文件,在/usr/lib下搜索库文件,它将用dir/usr/include和dir/usr/lib替代原来的相应路径。

-llibrary 查找名为library的库进行链接

-Ldir 增加-l选项指定的库文件的搜索路径,即编译器会到dir路径下搜索-l指定的库文件。

-nostdlib 该选项指示链接的时候不要使用标准路径下的库文件

(2) ARM平台相关的编译选项

-marm -mthumb 二选一,指定编译thumb指令集还是arm指令集

-march=name 指定特定的ARM架构,常用的包括:-march=armv6, -march=armv7-a

-mfpu=name 给出目标平台的浮点运算处理器类型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16

-mfloat-abi=name 给出目标平台的浮点预算ABI,支持的参数包括:“soft”, “softfp” and “hard”

④ 新手求解释“C语言中程序中所有函数之间都可以相互调用,与函数所在位置无关”错在哪里难道说是main函

一个是任何其他函数无法调用main函数,因为main是程序入口,它是唯一的,不可能在里面了再钻入入口
另外,a函数调用b函数,b必须在a前面,或者b的类型(名称和参数、返回值类型)在a之前申明过,不然编译器在扫描a的时候不知道如何处理b

⑤ gcc编译错误!

提示说需要-fPIC编译,然后在链接动态库的地方加上-fPIC的参数编译结果还是报错,需要把共享库所用到的所有静态库都采用-fPIC编译一边才可以成功的在64位环境下编译出动态库。
这里的-fPIC指的是地址无关代码

你看看这里的这篇文章吧:http://www.cnblogs.com/lightsalt/archive/2011/10/19/2217628.html

⑥ 在ARM嵌入式中,什么是与位置相关的代码,什么是与位置无关的代码

位置无关码:CPU取指时,总是相对于本条执行指令的相对地址去取指。比如指行一个ADD指令时,PC要取下一指令的地址,就在原来的基础上+4。这就不管你代码放在存储器的任何位置,只要他们的相对地址没有改变,就能正常执行程序。一般上电复位那几条语句就必须是位置无关码指令。

位置相关码:可以这样来说,就是CPU每次取指都从绝对位置去取,而不是上面的相对位置。这个绝对地址就是相对起始地址0来说的。这样,就要求你在存放程序时,必须给连接脚本所规定的一样,把代码放到指定位置。

⑦ 在Linux内核编译的时候,一定要在/usr/src/kernel下才行吗我怎么在自己建立的文件夹下编译总是报错呢

Linux基础知识:内核编译-2.4至2.6
前言
linux-2.6.x内核发布后, 坛子里的兄弟们肯定都迫不及待地要升级原有的2.4.x内核. 但是由于与2.6.x内核配套的系统程序并没有相应的来得及更新, 升级过程会碰到很多问题, 因此觉得有必要把我的经验与大家share一下:-) XD们以后碰到类似问题时, 请先阅读本文, 而不要一上来就盲目发帖.
1. 备份重要的数据
这是个好习惯,就不用多说了:-)
2. 下载最新的2.6.x内核源码
这个当然要到官方网站或者它的mir...?去下载了, 最好别到那些unknown的网站去下, 因为那些源码包有可能被恶意做了手脚. 最新的linux-2.6.4.tar.bz2源码包大概有33M左右. 下载的时候可以泡杯coffee, 然后点根烟......
在/usr/src/目录下解开源码包, 得到源代码目录/usr/src/linux-2.6.4/. 在对kernel做任何事情之前, 建议你先看一下它的README文件和Documentation/Changes文件, 从中你会得到不少有用的信息. 这些信息会让你在随后的升级过程避免很多不必要的麻烦.
在文档Documentation/Changes中给出了欲成功地升级到kernel-2.6.x所需的最小系统软件要求, 比如对于kernel-2.6.4是这样的:
复制内容到剪贴板代码:
Gnu make 3.79.1 # make --version
binutils 2.12 # ld -v
util-linux 2.10 # fdformat --version
mole-init-tools 0.9.10 # depmod -V
e2fsprogs 1.29 # tune2fs
jfsutils 1.1.3 # fsck.jfs -V
reiserfsprogs 3.6.3 # reiserfsck -V 21|grep reiserfsprogs
xfsprogs 2.6.0 # xfs_db -V
pcmcia-cs 3.1.21 # cardmgr -V
quota-tools 3.09 # quota -V
PPP 2.4.0 # pppd --version
isdn4k-utils 3.1pre1 # isdnctrl 21|grep version
nfs-utils 1.0.5 # showmount --version
procps 3.2.0 # ps --version
oprofile 0.5.3 # oprofiled --version
对于RH8/9的用户而言, 上述要求基本上都能满足. 大概只有两个程序需要更新: motils工具包和mkinitrd程序.
3. 安装mole-init-tools-3.0.tar.gz工具包
linux-2.6.x内核的mole处理过程有所改变(很多原先在用户态下由motils处理的工作都放到内核里去完成了), 因此2.4.x下的motils工具包已经不在适合新的2.6.x内核, 必需将其升级到mole-init-tools工具包. 该工具包的最新版本是3.0(ps, 该工具包的版本从0.9.15一下跳到3.0, 其跨度之大...hoho). 可以下载mole-init-tools-3.0.tar.gz源码包的地方有两个:
Rusty's Linux Kernel Page:

接下来, 按照下列步骤安装mole-init-tools工具包:
复制内容到剪贴板代码:
# configure --prefix=/
# make moveold
# make all install
# ./generate-modprobe.conf /etc/modprobe.conf
命令"make moveold"将把系统原来的motils工具程序改名为"*.old"(比如,lsmod.old等等). NOTE! 这是非常重要的一步, 千万不要省略. 这将使得你可以继续使用原有的linux-2.4.x系统, 因为在2.4.x系统下, 新的mole-init-tools工具包实际上是倚赖原来"*.old"程序来加载内核模块. 如果忘记了这一步也不要紧张, 可以先下载并安装原来的motils程序包, 然后按照上面的步骤重来一遍就可以了.
新的mole-init-tools工具包不再使用原来的/etc/moles.conf配置文件了, 而是使用新的配置文件/etc/modprobe.conf. 因此必需用命令"./generate-modprobe.conf /etc/modprobe.conf"来生成新的配置文件/etc/modprobe.conf. 但是令人不爽的是, 这个生成的新配置文件存在BUG, 下面我们将会提到.

⑧ 如何使用android的ndk编译器 编译c++的库

1. 概述 首先回顾一下 Android NDK 开发中,Android.mk 和 Application.mk 各自的职责。 Android.mk,负责配置如下内容: (1) 模块名(LOCAL_MODULE) (2) 需要编译的源文件(LOCAL_SRC_FILES) (3) 依赖的第三方库(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES) (4) 编译/链接选项(LOCAL_LDLIBS、LOCAL_CFLAGS) Application.mk,负责配置如下内容: (1) 目标平台的ABI类型(默认值:armeabi)(APP_ABI) (2) Toolchains(默认值:GCC 4.8) (3) C++标准库类型(默认值:system)(APP_STL) (4) release/debug模式(默认值:release) 由此我们可以看到,本文所涉及的编译选项在Android.mk和Application.mk中均有出现,下面我们将一个个详细介绍。 2. APP_ABI ABI全称是:Application binary interface,即:应用程序二进制接口,它定义了一套规则,允许编译好的二进制目标代码在所有兼容该ABI的操作系统和硬件平台中无需改动就能运行。(具体的定义请参考 网络 或者 维基网络 ) 由上述定义可以判断,ABI定义了规则,而具体的实现则是由编译器、CPU、操作系统共同来完成的。不同的CPU芯片(如:ARM、Intel x86、MIPS)支持不同的ABI架构,常见的ABI类型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。 这就是为什么我们编译出来的可以运行于Windows的二进制程序不能运行于Mac OS/Linux/Android平台了,因为CPU芯片和操作系统均不相同,支持的ABI类型也不一样,因此无法识别对方的二进制程序。 而我们所说的“交叉编译”的核心原理也跟这些密切相关,交叉编译,就是使用交叉编译工具,在一个平台上编译生成另一个平台上的二进制可执行程序,为什么可以做到?因为交叉编译工具实现了另一个平台所定义的ABI规则。我们在Windows/Linux平台使用Android NDK交叉编译工具来编译出Android平台的库也是这个道理。 这里给出最新 Android NDK 所支持的ABI类型及区别: 那么,如何指定ABI类型呢?在 Application.mk 文件中添加一行即可: APP_ABI := armeabi-v7a //只编译armeabi-v7a版本 APP_ABI := armeabi armeabi-v7a //同时编译armeabi,armeabi-v7a版本 APP_ABI := all //编译所有版本 3. LOCAL_LDLIBS Android NDK 除了提供了Bionic libc库,还提供了一些其他的库,可以在 Android.mk 文件中通过如下方式添加依赖: LOCAL_LDLIBS := -lfoo 其中,如下几个库在 Android NDK 编译时就默认链接了,不需要额外添加在 LOCAL_LDLIBS 中: (1) Bionic libc库 (2) pthread库(-lpthread) (3) math(-lmath) (4) C++ support library (-lstdc++) 下面我列了一个表,给出了可以添加到“LOCAL_LDLIBS”中的不同版本的Android NDK所支持的库: 下面是我总结的一些常用的CFLAGS编译选项: (1)通用的编译选项 -O2 编译优化选项,一般选择O2,兼顾了优化程度与目标大小 -Wall 打开所有编译过程中的Warning -fPIC 编译位置无关的代码,一般用于编译动态库 -shared 编译动态库 -fopenmp 打开多核并行计算, -Idir 配置头文件搜索路径,如果有多个-I选项,则路径的搜索先后顺序是从左到右的,即在前面的路径会被选搜索 -nostdinc 该选项指示不要标准路径下的搜索头文件,而只搜索-I选项指定的路径和当前路径。 --sysroot=dir 用dir作为头文件和库文件的逻辑根目录,例如,正常情况下,如果编译器在/usr/include搜索头文件,在/usr/lib下搜索库文件,它将用dir/usr/include和dir/usr/lib替代原来的相应路径。 -llibrary 查找名为library的库进行链接 -Ldir 增加-l选项指定的库文件的搜索路径,即编译器会到dir路径下搜索-l指定的库文件。 -nostdlib 该选项指示链接的时候不要使用标准路径下的库文件 (2) ARM平台相关的编译选项 -marm -mthumb 二选一,指定编译thumb指令集还是arm指令集 -march=name 指定特定的ARM架构,常用的包括:-march=armv6, -march=armv7-a -mfpu=name 给出目标平台的浮点运算处理器类型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16 -mfloat-abi=name 给出目标平台的浮点预算ABI,支持的参数包括:“soft”, “softfp” and “hard”

⑨ 用gcc怎么编译出真正的位置无关的代码

gcc test.c 的意思是直接生成a.out gcc test1.c 也是直接生成a.out 但是是会替换前一个的a.out 如果不放心你可以指定生成的名字 例如: gcc test.c -o aaa gcc test1.c -o bbb 这样执行aaa就是test代码了 执行bbb就是test1代码了

热点内容
安卓如何扫描浏览器中的二维码 发布:2025-03-21 08:04:10 浏览:677
如何把服务器挂在网站上 发布:2025-03-21 08:03:32 浏览:206
中国彩票的网是什么密码 发布:2025-03-21 07:25:06 浏览:442
苹果税与安卓哪个收费更狠 发布:2025-03-21 07:17:52 浏览:294
通过一个ip访问两台服务器吗 发布:2025-03-21 07:06:12 浏览:522
怎么让服务器查不到我的ip地址 发布:2025-03-21 07:05:27 浏览:184
编译器有什么用 发布:2025-03-21 07:00:24 浏览:78
android百度云盘 发布:2025-03-21 06:59:47 浏览:261
青云存储 发布:2025-03-21 06:50:03 浏览:403
王者荣耀有脚本吗 发布:2025-03-21 06:50:00 浏览:806