当前位置:首页 » 编程软件 » 如何编译hadoop

如何编译hadoop

发布时间: 2024-11-21 21:23:43

‘壹’ 如何快速地编写和运行一个属于自己的MapRece例子程序

大数据的时代, 到处张嘴闭嘴都是Hadoop, MapRece, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapRece程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapRece的人望而却步。
本文会教你如何用最快最简单的方法编写和运行一个属于自己的MapRece程序, let's go!
首先有两个前提:
1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和maprece工作正常 (这个真的是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)
2. 集群上安装了JDK (编译运行时会用到)
正式开始
1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapRece程序, 而不是如何写好一个功能齐全的MapRece程序)
内容如下:
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.maprece.Job;
import org.apache.hadoop.maprece.Mapper;
import org.apache.hadoop.maprece.Recer;
import org.apache.hadoop.maprece.lib.input.FileInputFormat;
import org.apache.hadoop.maprece.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class myword {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

public static class IntSumRecer
extends Recer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void rece(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println('Usage: wordcount <in> <out>');
System.exit(2);
}
Job job = new Job(conf, 'word count');
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumRecer.class);
job.setRecerClass(IntSumRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

与官方版本相比, 主要做了两处修改
1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples;
2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)
2. 拿到hadoop 运行的class path, 主要为编译所用
运行命令
hadoop classpath

保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:
/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-maprece/lib/*:/usr/lib/gphd/hadoop-maprece/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 编译
运行命令
javac -classpath xxx ./myword.java

xxx部分就是上一步里面取到的class path
运行完此命令后, 当前目录下会生成一些.class 文件, 例如:
myword.class myword$IntSumRecer.class myword$TokenizerMapper.class
4. 将class文件打包成.jar文件
运行命令
jar -cvf myword.jar ./*.class

至此, 目标jar 文件成功生成
5. 准备一些文本文件, 上传到hdfs, 以做word count的input
例子:
随意创建一些文本文件, 保存到mapred_test 文件夹
运行命令
hadoop fs -put ./mapred_test/

确保此文件夹成功上传到hdfs 当前用户根目录下
6. 运行我们的程序
运行命令
hadoop jar ./myword.jar myword mapred_test output

顺利的话, 此命令会正常进行, 一个MapRece job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。
至此大功告成!
如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapRece job。
但是原理大同小异, 练手的话, 基本够了。
一个抛砖引玉的简单例子, 欢迎板砖。
转载

‘贰’ window下怎么编译hadoop的源码

a) 进入windows命令行模式,进入到D:\soft\hadoop-2.6.4-src\hadoop-maven-plugins目录,执行"mvn install"命令,如果命令行界面提示:build success"时表示成功:
b) 进入到hadoop-2.5.2-src 目录,执行"mvn eclipse:eclipse -DskipTests"命令,如果出现"BUILD SUCCESS"说明hadoop源码编译成功。

c) 打开eclipse开发工具,将D:\soft\hadoop-2.6.4-src导入到workspace中,就可以查看源码。

‘叁’ 如何在hadoop-2.6.0上编译运行自己编写的java代码

在不使用eclipse情况使java程序在hadoop 2.2中运行的完整过程。整个过程中其实分为java程序的编译,生成jar包,运行测试。
这三个步骤运用的命令都比较简单,主要的还是如何找到hadoop 2.2提供给java程序用来编译的jar包。具体可以查看:
HADOOP_HOME/share/hadoop/httpfs/tomcat/webapps/webhdfs/WEB-INF/lib目录
下面会通过一个在hadoop中创建一个目录的JAVA例子来进行演示
具体代码如下:

package com.wan.demo;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

public class HADemo {

public static void main(String[] args) {
// TODO Auto-generated method stub
mkdir(args[0]);
}

public static void mkdir(String dir){
Configuration configuration=new Configuration();
FileSystem fs;
try {
fs = FileSystem.get(configuration);
fs.mkdirs(new Path(dir));
fs.close();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

把HADemo.java文件拷贝到linux环境中
配置HADOOP_HOME/bin到环境中,启动集群,进入HADemo.java文件目录中
注:下面的lib目录里面的文件由HADOOP_HOME/share/hadoop/httpfs/tomcat/webapps/ webhdfs/WEB-INF/lib目录中获取,下面做的目的是为了缩减命令长度
1.编译java
# mkdir class
#Javac -classpath .:lib/hadoop-common-2.2.0.jar:lib/hadoop-annotations-2.2.0.jar -d class HADemo.java
2.生成jar包
#jar -cvf hademo.jar -C class/ .
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/wan/(in = 0) (out= 0)(stored 0%)
adding: com/wan/demo/(in = 0) (out= 0)(stored 0%)
adding: com/wan/demo/HADemo.class(in = 844) (out= 520)(deflated 38%)
3.测试运行
#hadoop jar hademo.jar com.wan.demo.HADemo /test
检测:
#hadoop fs -ls /

结束!

热点内容
androidstudiozxing 发布:2024-11-21 23:51:10 浏览:806
怎么搭建服务器没有密码的连接 发布:2024-11-21 23:45:09 浏览:530
搭建电脑域服务器控制电脑 发布:2024-11-21 23:42:05 浏览:350
我的世界如何升级永恒服务器 发布:2024-11-21 23:36:04 浏览:137
华为鸿蒙os20跟安卓哪个快 发布:2024-11-21 23:27:34 浏览:402
炫酷博客php源码 发布:2024-11-21 23:21:11 浏览:377
缓存点 发布:2024-11-21 23:14:13 浏览:767
核桃编程线上 发布:2024-11-21 23:07:20 浏览:968
安卓如何直接设置手机铃声 发布:2024-11-21 23:05:21 浏览:337
逾期访问通讯录 发布:2024-11-21 23:00:46 浏览:660