当前位置:首页 » 编程软件 » 交叉编译链接库路径

交叉编译链接库路径

发布时间: 2024-07-02 03:36:58

⑴ lxml库的交叉编译

总有很多原因,需要在非x86平台下跑python

python的交叉编译网上有不少帖子,讲的都很好,这里就不在多说,放两个链接
http://ljgabc.github.io/2015/04/24/2015-04-24-%E4%BA%A4%E5%8F%89%E7%BC%96%E8%AF%91Python-3-4-2/
http://xiaoxia.org/2013/09/13/python-on-tomato/

lxml这类第三方库,底层采用了C语言写扩展。如果需要lxml在非侍虚纤X86平台上正确运行,那就需要将C语言扩展(xxx.so)编译成对应平台的二进制文件。
一般来说,直接在对应平台上编译安装老仿即可。But,如果对应平台上内存太小、处理器太慢、空间太少或者说根本没有誉激编译器.....(其实就是说的嵌入式)
好吧,还是安心的交叉编译lxml吧

lxml 依赖于 libxml2 、libxslt
首先把它两给编译了,安装一个指定路径 MYPREFIX
脚本里的 MY[xxx] 请指定对应的交叉编译工具

lxml

libxslt

还是先上脚本

/usr/local/bin/python3 是host python,必须和target python的版本一致 ,要不出了事不负责
${MYPREFIX_PYTHON} 是target python 编译安装的根目录
${DESTDIR} 编译的结果文件生成路径
LDFLAGS CC :一般交叉编译都会指定的编译工具或选项

大约就是这样了
在深入了解下

为什么要指定 LINKCC BLDSHARED LDSHARED ,这是啥?
这三个变量来自于 host python的 /usr/local/lib/python3.6/_sysconfigdata_m_XXXXXXXXX.py
在编译 build_ext 的时候,python的主要工具类是 Extension (from distutils.core import setup, Extension) ,这个类可以配置ext们的include/src/宏定义/等等一系列东西,它使用你配置的 CC BLDSHARED 等变量覆盖_sysconfigdata.py里的内容,然后进行编译

LINKCC BLDSHARED LDSHARED 这三个变量会指定链接,动态库链接时使用的编译器默认全都是 gcc ................................ :<
所以在编译lxml时只指定CC是没用的,因为 LDSHARED 还会被使用

推广一下, 以后第三方库交叉编译时可能还需要手动指定 _sysconfigdata.py 中的其他变量

GGGL

⑵ 如何使用clang+llvm+binutils+newlib+gdb搭建交叉编译环境

1,Build llvm/clang/lldb/lld 3.5.0等组件

1.0 准备:

至少需要从llvm.org下载llvm, cfe, lldb, compiler-rt,lld等3.5.0版本的代码。

$tar xf llvm-3.5.0.src.tar.gz

$cd llvm-3.5.0.src

$mkdir -p tools/clang
$mkdir -p tools/clang/tools/extra
$mkdir -p tools/lld
$mkdir -p projects/compiler-rt

$tar xf cfe-3.5.0.src.tar.xz -C tools/clang --strip-components=1
$tar xf compiler-rt-3.5.0.src.tar.xz -C projects/compiler-rt --strip-components=1
$tar xf lldb-3.5.0.src.tar.xz -C tools/clang/tools/extra --strip-components=1
$tar xf lld-3.5.0.src.tar.xz -C tools/lld --strip-components=1
1.1 【可选】使用clang --stdlib=libc++时,自动添加-lc++abi。

libc++组件可以使用gcc libstdc++的supc++ ABI,也可以使用c++abi,cxxrt等,实际上自动添加-lc++abi是不必要的,这里这么处理,主要是为了方便起见。实际上完全可以在“clang++ -stdlib=libc++”时再手工添加-lc++abi给链接器。

这里涉及到链接时DSO隐式还是显式的问题,早些时候ld在链接库时会自动引入由库引入的依赖动态库,后来因为这个行为的不可控性,所以ld链接器的行为做了修改,需要显式的写明所有需要链接的动态库,才会有手工添加-lc++abi这种情况出现。

--- llvm-3.0.src/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 18:49:06.663029075 +0800
+++ llvm-3.0.srcn/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 19:36:04.260071355 +0800
@@ -251,6 +251,7 @@
switch (Type) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
+ CmdArgs.push_back("-lc++abi");
break;

case ToolChain::CST_Libstdcxx:
1.2 【必要】给clang++添加-fnolibgcc开关。

这个开关主要用来控制是否连接到libgcc或者libunwind。

注:libgcc不等于libunwind。libgcc_eh以及supc++的一部分跟libunwind功能相当。

注:libgcc_s和compiler_rt的一部分相当。

这个补丁是必要的, 不会对clang的正常使用造成任何影响 ,只有在使用“-fnolibgcc"参数时才会起作用。

之所以进行了很多unwind的引入,主要是为了避免不必要的符号缺失麻烦,这里的处理相对来说是干净的,通过as-needed规避了不必要的引入。

--- llvm-static-3.5.0.bak/tools/clang/lib/Driver/Tools.cpp 2014-09-10 13:46:02.581543888 +0800
+++ llvm-static-3.5.0/tools/clang/lib/Driver/Tools.cpp 2014-09-10 16:03:37.559019321 +0800
@@ -2060,9 +2060,15 @@
".a");

CmdArgs.push_back(Args.MakeArgString(LibClangRT));
- CmdArgs.push_back("-lgcc_s");
- if (TC.getDriver().CCCIsCXX())
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else {
+ CmdArgs.push_back("-lgcc_s");
+ if (TC.getDriver().CCCIsCXX())
+ CmdArgs.push_back("-lgcc_eh");
+ }
}

static void addProfileRT(
@@ -7150,24 +7156,50 @@
bool isAndroid = Triple.getEnvironment() == llvm::Triple::Android;
bool StaticLibgcc = Args.hasArg(options::OPT_static_libgcc) ||
Args.hasArg(options::OPT_static);
+
+
+
if (!D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");

if (StaticLibgcc || isAndroid) {
if (D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");
} else {
if (!D.CCCIsCXX())
CmdArgs.push_back("--as-needed");
- CmdArgs.push_back("-lgcc_s");
+ if (Args.hasArg(options::OPT_fnolibgcc))
+ CmdArgs.push_back("-lunwind");
+ else
+ CmdArgs.push_back("-lgcc_s");
if (!D.CCCIsCXX())
CmdArgs.push_back("--no-as-needed");
}

if (StaticLibgcc && !isAndroid)
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc_eh");
else if (!Args.hasArg(options::OPT_shared) && D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");

// According to Android ABI, we have to link with libdl if we are
// linking with non-static libgcc.
--- llvm-static-3.5.0.bak/tools/clang/include/clang/Driver/Options.td 2014-08-07 12:51:51.000000000 +0800
+++ llvm-static-3.5.0/tools/clang/include/clang/Driver/Options.td 2014-09-10 13:36:34.598511176 +0800
@@ -788,6 +788,7 @@
def fomit_frame_pointer : Flag<["-"], "fomit-frame-pointer">, Group<f_Group>;
def fopenmp : Flag<["-"], "fopenmp">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fopenmp_EQ : Joined<["-"], "fopenmp=">, Group<f_Group>, Flags<[CC1Option]>;
+def fnolibgcc : Flag<["-"], "fnolibgcc">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fno_optimize_sibling_calls : Flag<["-"], "fno-optimize-sibling-calls">, Group<f_Group>;
def foptimize_sibling_calls : Flag<["-"], "foptimize-sibling-calls">, Group<f_Group>;
def force__cpusubtype__ALL : Flag<["-"], "force_cpusubtype_ALL">;
1.3 llvm的其他补丁。

llvm/clang将gcc toolchain的路径hard code在代码中,请查阅tools/clang/lib/Driver/ToolChains.cpp。

找到x86_64-redhat-linux之类的字符串。

如果没有你系统特有的gcc tripple string,请自行添加。

这个tripple string主要是给llvm/clang搜索gcc头文件等使用的,不影响本文要构建的toolchain

1.4 构建clang/llvm/lldb

本文使用ninja。顺便说一下,llvm支持configure和cmake两种构建方式。可能是因为工程太大,这两种构建方式的工程文件都有各种缺陷(主要表现在开关选项上,比如configure有,但是cmake却没有等)。llvm-3.4.1就是因为cmake工程文件的错误而导致了3.4.2版本的发布。

综合而言,cmake+ninja的方式是目前最快的构建方式之一,可以将构建时间缩短一半以上。

mkdir build
cd build

cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_BUILD_TYPE="Release" \
-DCMAKE_CXX_FLAGS="-std=c++11" \
-DBUILD_SHARED_LIBS=OFF \
-DLLVM_ENABLE_PIC=ON \
-DLLVM_TARGETS_TO_BUILD="all" \
-DCLANG_VENDOR="MyOS" ..

ninja

ninja install
如果系统原来就有clang/clang++的可用版本,可以添加:

-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
这样就会使用系统的clang++来构建llvm/clang

2,测试clang/clang++。

自己找几个简单的c/cpp/objc等编译测试一下即可。完整测试可以在构建时作ninja check-all

3,libunwind/libc++/libc++abi,一套不依赖libgcc, libstdc++的c++运行库。

3.1 从https://github.com/pathscale/libunwind 获取代码。

libunwind有很多个实现,比如gnu的libunwind, path64的libunwind,还有libcxxabi自带的Unwinder.

这里作下说明:

1),gnu的libunwind会有符号缺失和冲突。

2),libcxxabi自带的Unwinder是给mac和ios用的,也就是只能在darwin体系构建。目前Linux的实现仍然不全,等linux实现完整了或许就不再需要path64的unwind实现了。

暂时建议使用pathscale的unwind实现。

mkdir -p build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_C_FLAGS="-m64" ..
ninja

mkdir -p /usr/lib
cp src/libunwind.so /usr/lib
cp src/libunwind.a /usr/lib
3.2 第一次构建libcxx.

必须先构建一次libcxx,以便后面构建libcxxabi。这里构建的libcxx实际上是使用gcc的libgcc/stdc++/supc++的。

打上这个补丁来禁止libgcc的引入:

diff -Nur libcxx/cmake/config-ix.cmake libcxxn/cmake/config-ix.cmake
--- libcxx/cmake/config-ix.cmake 2014-06-25 06:57:50.000000000 +0800
+++ libcxxn/cmake/config-ix.cmake 2014-06-25 09:05:24.980350544 +0800
@@ -28,5 +28,4 @@
check_library_exists(c printf "" LIBCXX_HAS_C_LIB)
check_library_exists(m ccos "" LIBCXX_HAS_M_LIB)
check_library_exists(rt clock_gettime "" LIBCXX_HAS_RT_LIB)
-check_library_exists(gcc_s __gcc_personality_v0 "" LIBCXX_HAS_GCC_S_LIB)
编译安装:

mkdir build
cd build
cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
..
ninja
ninja install
3.3,测试第一次构建的libcxx。

使用"clang++ -stdlib=libc++ -o test test.cpp -lstdc++"编译简单c++代码,检查是否出错。(如果前面构建clang是已经apply了c++abi的链接补丁,这里会出现找不到c++abi的情况,跳过即可)

使用"ldd test"查看test二进制动态库使用情况。可以发现,test依赖于libgcc_s/libc++/libstdc++。(多少有些不爽了吧?使用了libc++居然还要依赖libstdc++?)

⑶ 如何使用CMake进行交叉编译

cmake交叉编译配置

很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。

CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。

toolChain脚本中设置的几个重要变量

1.CMAKE_SYSTEM_NAME:

即你目标机target所在的操作系统名称,比如ARM或者Linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.

2. CMAKE_C_COMPILER:

顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。

3. CMAKE_CXX_COMPILER:

同上,此时代表的是C++编译器。

4. CMAKE_FIND_ROOT_PATH:

指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如

set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)

该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。

5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:

对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER

6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:

对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.

7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:

对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH

8. BOOST_ROOT:

对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。

9. QT_QMAKE_EXECUTABLE:

对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)

toolChain demo

# this is required
SET(CMAKE_SYSTEM_NAME Linux)

# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)

# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)

# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)

这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。

⑷ 交叉编译时,如何链接指定路径下的库

在整个工程的configure.in文件中加入如下代码:
#configure.in
if test x$CC = xgcc; then
#AC_PATH_PROG(BLKID, blkid, [], [$PATH:/sbin])
#AC_PATH_PROG(VOLID, vol_id, [], [$PATH:/lib/udev])
AC_MSG_WARN($BLKID --------------------------------------) #code only for test
AM_CONDITIONAL(MY_CROSS_COMPILE,false)
else
#AC_PATH_PROG(BLKID, blkid, [], [/home/user-name/ltib/rootfs/sbin])
#AC_PATH_PROG(VOLID, vol_id, [], [/home/user-name/ltib/rootfs/lib])
AC_MSG_WARN($BLKID ++++++++++++++++++++++++++++++++++++++) #code only for test
AM_CONDITIONAL(MY_CROSS_COMPILE,true)
fi

在需要blkid库的Makefile.am文件中
if MY_CROSS_COMPILE
AM_CPPFLAGS = -include $(top_builddir)/config.h -I ../include \
-DLOCALEDIR=\"$(localedir)\" -I /home/user-name/ltib/rootfs/usr/include
AM_CFLAGS = -fsigned-char -I /home/user-name/ltib/rootfs/usr/include
else
AM_CPPFLAGS = -include $(top_builddir)/config.h -I ../include \
-DLOCALEDIR=\"$(localedir)\"
AM_CFLAGS = -fsigned-char
endif

lib_mount_la_LIBADD = $(LDADD_common)
LDADD_common =

if MY_CROSS_COMPILE
LDADD_common += -L$(LTIB_PATH)/rootfs/usr/lib -lblkid -luuid
else
LDADD_common += -lblkid -luuid
endif

⑸ 交叉编译busybox显示libc.so.6丢失!

拷贝C 库
交叉应用程序的开发需要用到交叉编译的链接库,我们在移植应用程序到我们的目标板的时
候,需要把交叉编译的链接库也一起移植到目标板上,这里我们用到的交叉工具链的路径是
/usr/local/arm/...../,链接库的目录是/usr/local/arm/...../arm-linux/lib,将其中部分库文件及符号链接拷贝到root_nfs(你创建的busybox的根目录)文件夹下的lib文件夹中。
部分库文件及符号链接有:ld-2.3.2.so,ld-linux.so.2,libc-2.3.2.so,libc.so.6

⑹ 如何进行Qt应用程序的交叉编译

1.设置环境变量: PATH=添加为交叉环境下编译后生成的qmake路径,通常和主机的系统是一种架构,同时需要确保交叉gcc编译器在在PATH定义 QMAKESOEC=交叉编译的对象的的平台描述文件,例如makespec/qws/linux-arm-g++ QTDIR=Qt的安装文件,存放这库和头文件 LD_LIBRARY_PATH=存放的是Qt的交叉编译后的库,准备为目标编译链接的库 2。执行环境变量 通常我们都会将以上的设置放置在一个bash脚本中,需要的时候就执行一下。开始编译 1.使用qmake -project来生成项目文件****.pro 2使用qmake来生成Makefile文件 3使用make来编译移植:使用readeif工具来分析目标系统的以来库,然后相关的库到目标文件系统内。通常我们也是采取脚本的方式来完成。 一般而言,凡是有规律的或者重复性的工作,我们都可以采取脚本的方式来解决。

⑺ 如何在windows上用ndk交叉编译其他平台程序

目标 :编译arm64的.so库

编译方法:理论上应该有两种交叉编译方法,法一,在Linux服务器上安装交叉工具链,直接用交叉工具链进行编译链接;法二,使用ndk完成交叉编译,因为

ndk已经安装好交叉编译工具链,以及相关的系统库和系统头文件了。这两种方法的区别在于,linux服务器上的编译使用的makefile和ndk使用的.mk
文件显然不同。原因是ndk作为一个集成编译环境,制定了一套特定的规则用于生成最终的编译脚本。

这里简单总结下,如何在windows用ndk进行交叉编译arm64目标平台的.so库:

step1:找到ndk开发工具包,官网之类的都可以下载,Android-ndk64-r10-windows-x86_64.rar文件

step2:解压上述ndk工具包,将包含程序源文件和头文件的文件夹testProject都放入android-ndk-r10下的samples目录下。

放在其他地方当然也可以,但是后续相对路径之类的不太好加,既然其他例子都放这,把代码放这编译是最保险的了。

step3:在testProject中增加一个jni的文件夹,必须要添加!!!!!!

step4:在jni文件夹中,添加一个Android.mk的文件,必须要添加!!!!!

step5:在jni文件夹中,添加一个Application.mk的文件与Android.mk并列,必须要添加!!!!!

step6:Android.mk和Application.mk合起来就类似于linux环境下的makefile编译文件。

如何写Android.mk,可以参考例子helllo-jni中jni文件夹下的Android.mk。

LOCAL_PATH:=$(call my-dir) #必须要写的

include $(CLEAR_VARS) #必须要写的

LOCAL_MODULE:=hello-jni #编译出来的模块名称

LOCAL_SRC_FILES:=hello-jni.c #制定编译的源文件名称

include $(BUILD_SHARED_LIBRARY)#放在最后

除了上述变量之外,还有其他的指定的变量,

LOCAL_CFLAGS,用于指定编译选项,这个和makefile中是完全一样的,可以指定编译选项-g,也可以指定编译宏及宏值

LOCAL_LDLIBS,用于指定链接的依赖库,这个可以makefile也是完全一样的,可以指定链接库用-l库名,以及指定库搜索路径用_L路径名

LOCAL_STATIC_LIBRARIES,指定链接的静态库名,makefile中没有

LOCAL_C_INCLUDES,用于指定编译头文件的路径,和makefile中不同,路径前不需要加-I,直接写路径即可,可以是相对路径或绝对路径,

多个路径之间用空格隔开。

编写上述Android.mk碰到的问题有,

(1)使用默认的系统自动加载stl库头文件总是出错,只好手动在LOCAL_STATIC_LIBRARIES指定sources/cxx-stl/stlport/stlport来完成对#include<string>这种c++形式的头文件加载

(2)使用$(SYSROOT)/usr/include来完成对系统库头文件的加载,结果找不到sem_t符号,只好指定platforms/android-L/arch-arm64/usr/include

step7:Application.mk编写

APP_STL指定使用的stl移植库,动态或者静态都行

APP_CPPFLAGS,指定app编译的编译选项

APP_ABI指定abi规范类型,例如arm64-v8a,也可以写成ALL就是把所有的类型全部编一编

APP_PLATFORM指定编译的platform名称,这里可以写成android-L或者不指定全编。

step8:编译完成后,运行。

启动cmd,使用cd /D进行到testProject的jni目录下

step9:将android-ndk-r10下的ndk-build.cmd直接拖拽到cmd中,此时直接敲回车,就可以编译了。当然也可以加一个 clean,清除编译中间文件。

step10:检查下编译结果,编译成功后在testProject中多了两个文件夹与jni并列的,libs和obj。
编译链接后的结果就在libs中!

⑻ 如何使用自己的makefile编译android ndk项目

android ndk提供了一套自己的makefile管理方式,要将源码项目移植到android平台,需要按照android的makefile规则编写makefile,还要按android的规则部署源码目录,对一个有自己的makefile管理方法的大型项目来说,只是做一下makefile迁移工作就是一件很麻烦的事。
其实android ndk上的编译说到底也就是交叉编译,只要配置好交叉编译工具链,使用原有的makefile也是可以编译出在android运行的c、c++程序的。
以android-ndk-r4-crystax的ndk版本为例:
编译器路径 android-ndk-r4-crystax/build/prebuilt/linux-x86/arm-eabi-4.4.0/bin
名称前缀 arm-eabi-
头文件目录 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/include
库文件目录 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/lib
你可以试一下上面的配置,如果编译链接都没有问题,可以adb push到android设备上运行看看,什么结果?
有点崩溃,根本运行不起来,你也许想试试看android自带的ndk例子,确实是能够运行的,问题在哪儿呢?
只是正确配置了编译器、头文件、库文件还不够,还需要配置编译、链接的参数,android例子中编译链接的参数是什么呢?你也许想深究一下android的makefile,可是不久你会发现那是更崩溃的事情,里面用了很多的make脚本函数。其实android的makefile是可以把执行的详细命令输出来的,只要make的时候加上V=1即可。可以看到确实带了很多参数
编译参数:
-fpic
-mthumb-interwork
-ffunction-sections
-funwind-tables
-fstack-protector
-fno-short-enums
-Wno-psabi
-march=armv5te
-mtune=xscale
-msoft-float
-mthumb
-fomit-frame-pointer
-fno-strict-aliasing
-finline-limit=64
-Wa,--noexecstack
-D__ARM_ARCH_5__
-D__ARM_ARCH_5T__
-D__ARM_ARCH_5E__
-D__ARM_ARCH_5TE__
-DANDROID
链接参数:

-nostdlib
-Bdynamic
-Wl,-dynamic-linker,/system/bin/linker
-Wl,--gc-sections
-Wl,-z,noreloc
-Wl,--no-undefined
-Wl,-z,noexecstack
-L$(PLATFORM_LIBRARY_DIRECTORYS)
crtbegin_static.o
crtend_android.o
这其中链接参数中的-Wl,-dynamic-linker,/system/bin/linker、crtbegin_static.o、crtend_android.o是最关键的,android使用了自己的进程加载器,并且自定义了c运行时的启动结束。难怪先前编译的进程启动不了。

热点内容
解压分卷失败 发布:2024-11-07 18:32:56 浏览:974
oracle导出数据库表数据 发布:2024-11-07 18:24:57 浏览:449
java新建文件夹 发布:2024-11-07 18:24:21 浏览:640
服务的mysql脚本引导不上 发布:2024-11-07 18:19:25 浏览:878
win7下载文件夹恢复 发布:2024-11-07 18:18:36 浏览:221
酷狗号密码忘了怎么办 发布:2024-11-07 18:03:13 浏览:87
mupdf编译 发布:2024-11-07 18:02:58 浏览:32
sql时间筛选 发布:2024-11-07 17:59:53 浏览:860
为什么开机密码老不对 发布:2024-11-07 17:49:41 浏览:228
java源码编译 发布:2024-11-07 17:34:59 浏览:916