编译器一般分成
A. 计算机软件一般可以分为哪几种
计算机软件总体分为系统软件和应用软件两大类:
系统软件是各类操作系统,如windows、Linux、UNIX等,还包括操作系统的补丁程序及硬件驱动程序,都是系统软件类。应用软件可以细分的种类就更多了,如工具软件、游戏软件、管理软件等都属于应用软件类。
其中系统软件是负责管理计算机系统中各种独立的硬件,使得它们可以协调工作。系统软件使得计算机使用者和其他软件将计算机当作一个整体而不需要顾及到底层每个硬件是如何工作的。
一般来讲,系统软件包括操作系统和一系列基本的工具(比如编译器,数据库管理,存储器格式化,文件系统管理,用户身份验证,驱动管理,网络连接等方面的工具)。
(1)编译器一般分成扩展阅读
计算机软件的特点:
(1)计算机软件与一般作品的目的不同。计算机软件多用于某种特定目的,如控制一定生产过程,使计算机完成某些工作;而文学作品则是为了阅读欣赏,满足人们精神文化生活需要。
(2)要求法律保护的侧重点不同。着作权法一般只保护作品的形式,不保护作品的内容。而计算机软件则要求保护其内容。
(3)计算机软件语言与作品语言不同。计算机软件语言是一种符号化、形式化的语言,其表现力十分有限;文字作品则是人类的自然语言,其表现力十分丰富。
(4)计算机软件可援引多种法律保护,文字作品则只能援引着作权法。
B. 编译器是怎么把程序分成代码段数据段等的。。代码段没有数据要怎么搞
根据你代码的全局变量定义 或者静态变量定义,在编译的时候,为可执行程序分配一段空间用于存放这些变量。未初始化的全局变量存放在BSS段中,代码段要是没有上述变量,那数据段也就是空的。
C. 编译程序的工作过程一般可以划分为哪5个基本阶段,还自始至终伴随进行哪两项工作
1、编译程序把一个源程序翻译成目标程序的工作过程分为五个阶段:词法分析;语法分析;中间代码生成;代码优化;目标代码生成。
2、编译程序的工作过程一般自始至终伴随进行信息表管理和出错处理两项工作。
主要是进行词法分析和语法分析,又称为源程序分析,分析过程中发现有语法错误,给出提示信息。
(3)编译器一般分成扩展阅读:
解释程序是一种语言处理程序,在词法、语法和语义分析方面与编译程序的工作原理基本相同,但在运行用户程序时,它直接执行源程序或源程序的内部形式(中间代码)。因此,解释程序并不产生目标程序,这是它和编译程序的主要区别。解释程序的工作过程如下:
1、由总控程序完成初始化工作。
2、依次从源程序中取出一条语句进行语法检查,如有错,输出错误信息;如果通过了语法检查,则根据语句翻泽成相应的指令并执行它。
3、检查源程序是否已经全部解释执行完毕,如果未完成则继续解释并执行下一条语句,直到全部语句都处理完毕。
D. 描述一般的编译程序可分为哪些阶段,每个阶段的目的是什么
其目的是保证标识符和常数的正确使用,把必要的信息...综合部分 综合阶段必须根据符号表和中间语言程序产生...目标程序质量,也可以把一个逻辑步骤的工作分为几遍.
E. 什么是编译器
编译器
编译器是一种特殊的程序,它可以把以特定编程语言写成的程序变为机器可以运行的机器码。我们把一个程序写好,这时我们利用的环境是文本编辑器。这时我程序把程序称为源程序。在此以后程序员可以运行相应的编译器,通过指定需要编译的文件的名称就可以把相应的源文件(通过一个复杂的过程)转化为机器码了。
[编辑]编译器工作方法
首先编译器进行语法分析,也就是要把那些字符串分离出来。然后进行语义分析,就是把各个由语法分析分析出的语法单元的意义搞清楚。最后生成的是目标文件,我们也称为obj文件。再经过链接器的链接就可以生成最后的可执行代码了。有些时候我们需要把多个文件产生的目标文件进行链接,产生最后的代码。我们把一过程称为交叉链接。
一个现代编译器的主要工作流程如下:
* 源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables)
工作原理
编译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
F. 编译器的种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。 编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
G. 编译器的工作分为哪几个阶段
编译器就是一个普通程序,没什么大不了的
什么是编译器?
编译器是一个将高级语言翻译为低级语言的程序。
首先我们一定要意识到编译器就是一个普通程序,没什么大不了的。
在没有弄明白编译器如何工作之前你可以简单的把编译器当做一个黑盒子,其作用就是输入一个文本文件输出一个二进制文件。
基本上编译器经过了以下几个阶段,等等,这句话教科书上也有,但是我相信很多同学其实并没有真正理解这几个步骤到底在说些什么,为了让你彻底理解这几个步骤,我们用一个简单的例子来讲解。
假定我们有一段程序:
while (y < z) {
int x = a + b;
y += x;
}
那么编译器是怎样把这一段程序人类认识的程序转换为CPU认识的二进制机器指令呢?
提取出每一个单词:词法分析
首先编译器要把源代码中的每个“单词”提取出来,在编译技术中“单词”被称为token。其实不只是每个单词被称为一个token,除去单词之外的比如左括号、右括号、赋值操作符等都被称为token。
从源代码中提取出token的过程就被称为词法分析,Lexical Analysis。
经过一遍词法分析,编译器得到了以下token:
T_While while
T_LeftParen (
T_Identifier y
T_Less <
T_Identifier z
T_RightParen )
T_OpenBrace {
T_Int int
T_Identifier x
T_Assign =
T_Identifier a
T_Plus +
T_Identifier b
T_Semicolon ;
T_Identifier y
T_PlusAssign +=
T_Identifier x
T_Semicolon ;
T_CloseBrace }
就这样一个磁盘中保存的字符串源代码文件就转换为了一个个的token。
这些token想表达什么意思:语法分析
有了这些token之后编译器就可以根据语言定义的语法恢复其原本的结构,怎么恢复呢?
原来,编译器在扫描出各个token后根据规则将其用树的形式表示出来,这颗树就被称为语法树。
语法树是不是合理的:语义分析
有了语法树后我们还要检查这棵树是不是合法的,比如我们不能把一个整数和一个字符串相加、比较符左右两边的数据类型要相同,等等。
这一步通过后就证明了程序合法,不会有编译错误。
H. 交叉编译器的分类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高阶语言作为输入,输出也是高阶语言的编译器。例如: 自动并行化编译器经常采用一种高阶语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源代码,由语法分析器和语意分析器协同工作。语法分析器负责把源代码中的‘单词’(Token)找出来,语意分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端语法分析器看到的是“a, =, b , +, c;”,语意分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化和处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类:函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
I. 典型的编译器可以划分成几个主要的逻辑阶段
这是我们今天的作业,
典型的编译器可以划分成七个主要的逻辑阶段,分别是词法分析器、语法分析器、语义分析器、中间代码生成器、独立于机器的代码优化器、代码生成器、依赖于机器的代码优化器。各阶段的主要功能:
(1)词法分析器:词法分析阅读构成源程序的字符流,按编程语言的词法规则把它们组成词法记号流。
(2)语法分析器:按编程语言的语法规则检查词法分析输出的记号流是否符合这些规则,并依据这些规则所体现出的该语言的各种语言构造的层次性,用各记号的第一元建成一种树形的中间表示,这个中间表示用抽象语法的方式描绘了该记号流的语法情况。
(3)语义分析器:使用语法树和符号表中的信息,依据语言定义来检查源程序的语义一致性,以保证程序各部分能有意义地结合在一起。它还收集类型信息,把它们保存在符号表或语法树中。
(4)中间代码生成器:为源程序产生更低级的显示中间表示,可以认为这种中间表示是一种抽象机的程序。
(5)独立于机器的代码优化器:试图改进中间代码,以便产生较好的目标代码。通常,较好是指执行较快,但也可能是其他目标,如目标代码较短或目标代码执行时能耗较低。
(6)代码生成器:取源程序的一种中间表示作为输入并把它映射到一种目标语言。如果目标语言是机器代码,则需要为源程序所用的变量选择寄存器或内存单元,然后把中间指令序列翻译为完成同样任务的机器指令序列。
(7)依赖于机器的代码优化器:试图改进目标机器代码,以便产生较好的目标机器代码。
J. 编译程序分为哪几个主要部分
1、词法分析
词法分析的任务是对由字符组成的单词进行处理,从左至右逐个字符地对源程序进行扫描,产生一个个的单词符号,把作为字符串的源程序改造成为单词符号串的中间程序。执行词法分析的程序称为词法分析程序或扫描器。
2、语法分析
编译程序的语法分析器以单词符号作为输入,分析单词符号串是否形成符合语法规则的语法单位,如表达式、赋值、循环等,最后看是否构成一个符合要求的程序,按该语言使用的语法规则分析检查每条语句是否有正确的逻辑结构,程序是最终的一个语法单位。
3、中间代码生成
中间代码是源程序的一种内部表示,或称中间语言。中间代码的作用是可使编译程序的结构在逻辑上更为简单明确,特别是可使目标代码的优化比较容易实现。中间代码即为中间语言程序,中间语言的复杂性介于源程序语言和机器语言之间。
4、代码优化
代码优化是指对程序进行多种等价变换,使得从变换后的程序出发,能生成更有效的目标代码。所谓等价,是指不改变程序的运行结果。所谓有效,主要指目标代码运行时间较短,以及占用的存储空间较小。这种变换称为优化。
5、目标代码生成
目标代码生成是编译的最后一个阶段。目标代码生成器把语法分析后或优化后的中间代码变换成目标代码。
(10)编译器一般分成扩展阅读:
特点
数据结构分析和综合时所用的主要数据结构,包括符号表、常数表和中间语言程序。符号表由源程序中所用的标识符连同它们的属性组成。
其中属性包括种类(如变量、数组、结构、函数、过程等)、类型(如整型、实型、字符串、复型、标号等),以及目标程序所需的其他信息。常数表由源程序中用的常数组成,其中包括常数的机内表示,以及分配给它们的目标程序地址。
分析部分源程序的分析是经过词法分析、语法分析和语义分析三个步骤实现的。词法分析由词法分析程序(又称为扫描程序)完成。
其任务是识别单词(即标识符、常数、保留字,以及各种运算符、标点符号等)、造符号表和常数表,以及将源程序换码为编译程序易于分析和加工的内部形式。