当前位置:首页 » 编程软件 » shell脚本操作redis

shell脚本操作redis

发布时间: 2024-02-27 07:58:51

⑴ 怎么向redis导入大量数据

具体实现步骤如下:1.新建一个文本文件,包含redis命令如果有了原始数据,其实构造这个文件并不难,譬如shell,python都可以2.将这些命令转化成RedisProtocol。因为Redis管道功能支持的是RedisProtocol,而不是直接的Redis命令。如何转化,可参考后面的脚本。3.利用管道插入catdata.txt|redis-cli--pipeShellVSRedispipe下面通过测试来具体看看Shell批量导入和Redispipe之间的效率。测试思路:分别通过shell脚本和Redispipe向数据库中插入10万相同数据,查看各自所花费的时间。Shell脚本如下:#!/bin/bashfor((i=0;i>redis.logdone每次插入的值都是helloworld,但键不同,name0,name1name99999。RedispipeRedispipe会稍微麻烦一点1>首先构造redis命令的文本文件在这里,我选用了python#!/usr/bin/pythonforiinrange(100000):print'setname'+str(i),'helloworld'#python1.py>redis_commands.txt#head-2redis_commands.>将这些命令转化成RedisProtocol在这里,我利用了github上一个shell脚本,#!/bin/bashwhilereadCMD;do#eachcommandbeginswith*{numberargumentsincommand}\r\nXS=($CMD);printf"*${#XS[@]}\r\n"#foreachargument,weappend${length}\r\n{argument}\r\nforXin$CMD;doprintf"\$${#X}\r\n$X\r\n";donedoneredis_data.txt#head-7redis_data.txt*3$3set$5name0$10helloworld至此,数据构造完毕。测试结果

⑵ redis shell 导入到指定的数据库

1、导出redis

[plain]view plain

  • #!/bin/bash

  • REDIS_HOST=localhost

  • REDIS_PORT=6379

  • REDIS_DB=1

  • KEYNAME=redis:hash:*

  • KEYFILE=key.txt

  • echo"KEYS$KEYNAME"|redis-cli-h$REDIS_HOST-p$REDIS_PORT-n$REDIS_DB>$KEYFILE

  • OUTFILE=valuelist.txt

  • TEMPFILE=$OUTFILE.tmp

  • echo>$TEMPFILE

  • forkeyin`cat$KEYFILE`

  • do

  • echo$key

  • #echo"HGETALL$key"|redis-cli-h$REDIS_HOST-p$REDIS_PORT-n$REDIS_DB>>$TEMPFILE

  • echo"GET$key"|redis-cli-h$REDIS_HOST-p$REDIS_PORT-n$REDIS_DB>>$TEMPFILE

  • done

  • 2、整理导出的结果
  • [plain]view plain

  • cat$TEMPFILE|xargs-n2|awk-F""-vKEYNAME=$KEYNAME'{print"HSET"KEYNAME""$1,"""$2"""}'>$OUTFILE

  • 其中的xargs -n 2是把2行合成一行,换行符用空格代替
  • 然后用awk按空格分开,$1是keynam $2是key的值

    再次转换成HSET的格式,其中用到KEYNAME变量,这个要用-v预先定义。

    最后转化为 HSET KEYNAME KEY "VALUE"格式。

    3、导入转换的结果

    [plain]view plain

  • cat$OUTFILE|redis-cli-hlocalhost-p6379


  • 二、直接用Redis的Dump和Restore导出和导入

    [plain]view plain

  • redis-cli--rawmptest|head-c-1|redis-cli-xrestoretest10

linux Shell 脚本编程最佳实践

IT路边社

前言

与其它的编码规范一样,这里所讨论的不仅仅是编码格式美不美观的问题, 同时也讨论一些约定及编码标准。这份文档主要侧重于我们所普遍遵循的规则,对于那些不是明确强制要求的,我们尽量避免提供意见。

编码规范对于程序员而言尤为重要,有以下几个原因:

本文档中的准则致力于最大限度达到以下原则:

尽管本文档涵盖了许多基础知识,但应注意的是,没有编码规范可以为我们回答所有问题,开发人员始终需要再编写完代码后,对上述原则做出正确的判断。

:未明确指明的则默认为必须(Mandatory)

主要参考如下文档:

仅建议Shell用作相对简单的实用工具或者包装脚本。因此单个shell脚本内容不宜太过复杂。

在选择何时使用shell脚本时时应遵循以下原则:

可执行文件不建议有扩展名,库文件必须使用 .sh 作为扩展名,且应是不可执行的。

执行一个程序时,无需知道其编写语言,且shell脚本并不要求具有扩展名,所以更倾向可执行文件没有扩展名。

而库文件知道其编写语言十分重要,使用 .sh 作为特定语言后缀的扩展名,可以和其他语言编写的库文件加以区分。

文件名要求全部小写, 可以包含下划线 _ 或连字符 - , 建议可执行文件使用连字符,库文件使用下划线。

正例:

反例:

源文件编码格式为UTF-8。避免不同操作系统对文件换行处理的方式不同,一律使用 LF 。

每行最多不超过120个字符。每行代码最大长度限制的根本原因是过长的行会导致阅读障碍,使得缩进失效。

除了以下两种情况例外:

如出现长度必须超过120个字符的字符串,应尽量使用here document或者嵌入的换行符等合适的方法使其变短。

示例:

除了在行结束使用换行符,空格是源文件中唯一允许出现的空白字符。

对从来没有用到的或者被注释的方法、变量等要坚决从代码中清理出去,避免过多垃圾造成干扰。

Bash 是唯一被允许使用的可执行脚本shell。

可执行文件必须以 #!/bin/bash 开始。请使用 set 来设置shell的选项,使得用 bash echo "Process $: Done making $$$."
# 示例7:命令参数及路径不需要引号 grep -li Hugo /dev/ "$1"
# 示例8:常规变量用双引号,ccs可能为空的特殊情况可不用引号 git send-email --to "${reviewers}" ${ccs:+"--cc" "${ccs}"}
# 示例9:正则用单引号,$1可能为空的特殊情况可不用引号 grep -cP '([Ss]pecial||?characters*) ${1:+"$1"}
# 示例10:位置参数传递推荐带引号的"$@",所有参数作为单字符串传递用带引号的"$*" # content of t.sh func_t { echo num: $# echo args: 1:$1 2:$2 3:$3 }
func_t "$@" func_t "$*" # 当执行 ./t.sh a b c 时输出如下: num: 3 args: 1:a 2:b 3:c num: 1 args: 1:a b c 2: 3:

使用 $(command) 而不是反引号。

因反引号如果要嵌套则要求用反斜杠转义内部的反引号。而 $(command) 形式的嵌套无需转义,且可读性更高。

正例:

反例:

条件测试

使用 [[ ... ]] ,而不是 [ , test , 和 /usr/bin/[ 。

因为在 [[ 和 ]] 之间不会出现路径扩展或单词切分,所以使用 [[ ... ]] 能够减少犯错。且 [[ ... ]] 支持正则表达式匹配,而 [ ... ] 不支持。参考以下示例:

尽可能使用变量引用,而非字符串过滤。

Bash可以很好的处理空字符串测试,请使用空/非空字符串测试方法,而不是过滤字符,让代码具有更高的可读性。正例:

反例:

正例:

反例:

正例:

反例:

文件名扩展

当进行文件名的通配符扩展时,请指定明确的路径。

当目录中有特殊文件名如以 - 开头的文件时,使用带路径的扩展通配符 ./* 比不带路径的 * 要安全很多。

应该避免使用eval。

Eval在用于分配变量时会修改输入内容,但设置变量的同时并不能检查这些变量是什么。反例:

请使用进程替换或者for循环,而不是通过管道连接while循环。

这是因为在管道之后的while循环中,命令是在一个子shell中运行的,因此对变量的修改是不能传递给父shell的。

这种管道连接while循环中的隐式子shell使得bug定位非常困难。反例:

如果你确定输入中不包含空格或者其他特殊符号(通常不是来自用户输入),则可以用for循环代替。例如:

使用进程替换可实现重定向输出,但是请将命令放入显式子 shell,而非 while 循环创建的隐式子 shell。例如:

总是检查返回值,且提供有用的返回值。

对于非管道命令,使用 $? 或直接通过 if 语句来检查以保持其简洁。

例如:

当内建命令可以完成相同的任务时,在shell内建命令和调用外部命令之间,应尽量选择内建命令。

因内建命令相比外部命令而言会产生更少的依赖,且多数情况调用内建命令比调用外部命令可以获得更好的性能(通常外部命令会产生额外的进程开销)。

正例:

反例:

加载外部库文件不建议用使用.,建议使用source,已提升可阅读性。正例:

反例:

除非必要情况,尽量使用单个命令及其参数组合来完成一项任务,而非多个命令加上管道的不必要组合。常见的不建议的用法例如:cat和grep连用过滤字符串; cat和wc连用统计行数; grep和wc连用统计行数等。

正例:

除特殊情况外,几乎所有函数都不应该使用exit直接退出脚本,而应该使用return进行返回,以便后续逻辑中可以对错误进行处理。正例:

反例:

推荐以下工具帮助我们进行代码的规范:

原文链接:http://itxx00.github.io/blog/2020/01/03/shell-standards/

获取更多的面试题、脚本等运维资料点击: 运维知识社区 获取

脚本之---短信轰炸机

脚本之---QQ微信轰炸机

ansible---一键搭建redis5.0.5集群

elk7.9真集群docker部署文档

全球最全loki部署及配置文档

最强安全加固脚本2.0

一键设置iptbales脚本

⑷ 如何使用SHELL编写redis的启动脚本

#!/bin/bash
#
# Init file for redis
# From: JC
# Email:[email protected]
# chkconfig: - 80 12
# description: redis daemon
#
# processname: redis
# config: /opt/redis-2.6.4/redis.conf
# pidfile: /var/run/redis.pid

source /etc/init.d/functions

BIN="/opt/redis/bin"
CONFIG="/opt/redis-2.6.4/redis.conf"
PIDFILE="/var/run/redis.pid"

### Read configuration
[ -r "$SYSCONFIG" ] && source "$SYSCONFIG"

RETVAL=0
prog="redis-server"
desc="Redis Server"

start() {

if [ -e $PIDFILE ];then
echo "$desc already running...."
exit 1
fi

echo -n $"Starting $desc: "
daemon $BIN/$prog $CONFIG &

RETVAL=$?
echo
[ $RETVAL -eq 0 ] && touch /var/lock/subsys/$prog
return $RETVAL
}

stop() {
echo -n $"Stop $desc: "
killproc $prog
RETVAL=$?
echo
[ $RETVAL -eq 0 ] && rm -f /var/lock/subsys/$prog $PIDFILE
return $RETVAL
}

restart() {
stop
start
}

case "$1" in
start)
start
;;
stop)
stop
;;
restart)
restart
;;
condrestart)
[ -e /var/lock/subsys/$prog ] && restart
RETVAL=$?
;;
status)
status $prog
RETVAL=$?
;;
*)
echo $"Usage: $0 {start|stop|restart|condrestart|status}"
RETVAL=1
esac

exit $RETVAL

[root@dg-web opt]# /etc/init.d/redis status
redis-server (pid 26147) is running...
[root@dg-web opt]# netstat -lntp|grep redis-server
URL:http://www.bianceng.cn/database/Mysql/201410/46081.htm
tcp 0 0 0.0.0.0:6379 0.0.0.0:* LISTEN 26147/redis-server
[root@dg-web opt]# /etc/init.d/redis stop
Stop Redis Server: [ OK ]
[root@dg-web opt]# /etc/init.d/redis status
redis-server is stopped
[root@dg-web opt]# netstat -lntp|grep redis-server

⑸ 使用python同步mysql到redis由于数据较多,一条一条读出来写到redis太慢,有没有可以批量操作的。

MYSQL快速同步数据到Redis
举例场景:存储游戏玩家的任务数据,游戏服务器启动时将mysql中玩家的数据同步到redis中。
从MySQL中将数据导入到Redis的Hash结构中。当然,最直接的做法就是遍历MySQL数据,一条一条写入到Redis中。这样没什么错,但是速度会非常慢。如果能够想法使得MySQL的查询输出数据直接能够与Redis命令行的输入数据协议相吻合,可以节省很多消耗和缩短时间。
Mysql数据库名称为:GAME_DB, 表结构举例:
CREATE TABLE TABLE_MISSION (
playerId int(11) unsigned NOT NULL,
missionList varchar(255) NOT NULL,
PRIMARY KEY (playerId)
);

Redis中的数据结构使用哈希表:
键KEY为mission, 哈希域为mysql中对应的playerId, 哈希值为mysql中对应的missionList。 数据如下:
[root@iZ23zcsdouzZ ~]# redis-cli
127.0.0.1:6379> hget missions 36598
"{\"10001\":{\"status\":1,\"progress\":0},\"10002\":{\"status\":1,\"progress\":0},\"10003\":{\"status\":1,\"progress\":0},\"10004\":{\"status\":1,\"progress\":0}}"

快速同步方法:
新建一个后缀.sql文件:mysql2redis_mission.sql
内容如下:
SELECT CONCAT(
"*4\r\n",
'$', LENGTH(redis_cmd), '\r\n',
redis_cmd, '\r\n',
'$', LENGTH(redis_key), '\r\n',
redis_key, '\r\n',
'$', LENGTH(hkey), '\r\n',
hkey, '\r\n',
'$', LENGTH(hval), '\r\n',
hval, '\r'
)
FROM (
SELECT
'HSET' as redis_cmd,
'missions' AS redis_key,
playerId AS hkey,
missionList AS hval
FROM TABLE_MISSION
) AS t

创建shell脚本mysql2redis_mission.sh
内容:
mysql GAME_DB --skip-column-names --raw < mission.sql | redis-cli --pipe

Linux系统终端执行该shell脚本或者直接运行该系统命令,即可将mysql数据库GAME_DB的表TABLE_MISSION数据同步到redis中键missions中去。mysql2redis_mission.sql文件就是将mysql数据的输出数据格式和redis的输入数据格式协议相匹配,从而大大缩短了同步时间。
经过测试,同样一份数据通过单条取出修改数据格式同步写入到redis消耗的时间为5min, 使用上面的sql文件和shell命令,同步完数据仅耗时3s左右。

⑹ 关于Redis批量写入的介绍

最近测试redis性能,需要批量插入1千万条以上的数据,

就简单进行了研究,大概有以下几种方法:

一:java程序调用,简单的for循环,通过Jedis的方法,直接插入,

       至于速度,不用看,不用试,根本不行,就不给实现了。

二:通过shell脚本,也比较简单,但也是因为要通过port端口的形式,

       连接到redis,速度也是慢的不行,放弃。

三:通过redis提供管道,感觉这种方法是最靠谱的,一下是实现:

 步骤1:首先简单写一个shell脚本:

目的是生成一个用批量插入的脚本文件,

步骤2:这里linux或者windows上生成的文件不能直接当做redis语句来跑,

简单来说,就是因为linux,windows和dos的换行并不一样,

所以需要简单转换一下:

转换的方法有好多种:

1:一般Linux发行版中都带有这个小工具,只能把DOS转换为UNIX文件,命令如下:

上面的命令会去掉行尾的^M符号。(如果机器上没有安装nuix2dos,直接用方法2即可)

2:用vim,vim是vi的改进版本,使用方式:

一行命令即可,保存退出,

步骤3:就是跑脚本了,通过redis提供的管道--pipe形式,

三步即可,完成redis的批量插入,速度,在2000万条的情况下,生成脚本的速度稍慢,插入的速度还在几分钟,

速度可以说是非常快了~

本文来自php中文网的 redis教程 ​栏目: https://www.php.cn/redis/

⑺ Redis持久化

Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:

·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。

·其次对常见持久化问题进行分析定位和优化。

·最后结合Redis常见 的单机多实例部署场景进行优化。

5.1RDB

RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。

5.1.1触发机制

手动触发分别对应save和bgsave命令:

·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应

的Redis日志如下:

* DB saved on disk

·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:

* Background saving started by pid 3151

* DB saved on disk

* RDB: 0 MB of memory used by -on-write

* Background saving terminated with success

显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。

除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:

1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。

2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。

3)执行debug reload命令重新加载Redis时,也会自动触发save操作。

4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。

5.1.2流程说明

bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。

1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。

2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。

3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。

4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。

5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。

5.1.3RDB文件的处理

保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。

运维提示

当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。

压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。

运维提示

虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。

校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:

# Short read or OOM loading DB. Unrecoverable error, aborting now.

这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。

5.1.4RDB的优缺点

RDB的优点:

·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。

·Redis加载RDB恢复数据远远快于AOF的方式。

RDB的缺点:

·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。

·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。

5.2AOF

AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。

5.2.1使用AOF

开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。

1)所有的写入命令会追加到aof_buf(缓冲区)中。

2)AOF缓冲区根据对应的策略向硬盘做同步操作。

3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。

4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。

5.2.2命令写入

AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n

Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介

绍关于AOF的两个疑惑:

1)AOF为什么直接采用文本协议格式?可能的理由如下:

·文本协议具有很好的兼容性。

·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。

·文本协议具有可读性,方便直接修改和处理。

2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。

5.2.3文件同步

Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。

表5-1AOF缓冲区同步文件策略

系统调用write和fsync说明:

·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。

·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参

见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync

·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。

·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。

·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)

5.2.4重写机制

随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。

重写后的AOF文件为什么可以变小?有如下原因:

1)进程内已经超时的数据不再写入文件。

2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set

a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。

3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。

AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:

·手动触发:直接调用bgrewriteaof命令。

·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。

·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。

·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。

图5-3AOF重写运作流程

流程说明:

1)执行AOF重写请求。

如果当前进程正在执行AOF重写,请求不执行并返回如下响应:

ERR Background append only file rewriting already in progress

如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:

Background append only file rewriting scheled

2)父进程执行fork创建子进程,开销等同于bgsave过程。

3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。

3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。

4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。

5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。

5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。

5.3)使用新AOF文件替换老文件,完成AOF重写。

5.2.5重启加载

AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。

流程说明:

1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:

* DB loaded from append only file: 5.841 seconds

2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:

* DB loaded from disk: 5.586 seconds

3)加载AOF/RDB文件成功后,Redis启动成功。

4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。

5.2.6文件校验

加载损坏的AOF文件时会拒绝启动,并打印如下日志:

# Bad file format reading the append only file: make a backup of your AOF file,

then use ./redis-check-aof --fix <filename>

运维提示

对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。

AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印

如下警告日志:

# !!! Warning: short read while loading the AOF file !!!

# !!! Truncating the AOF at offset 397856725 !!!

# AOF loaded anyway because aof-load-truncated is enabled

5.3问题定位与优化

Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。

5.3.1fork操作

当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。

fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。

如何改善fork操作的耗时:

1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。

2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。

3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。

4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。

5.3.2子进程开销监控和优化

子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。

1.CPU

·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.

·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。

2.内存

·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程中共享整个父进程内存快照。

·内存消耗监控。RDB重写时,Redis日志输出容如下:

* Background saving started by pid 7692

* DB saved on disk

* RDB: 5 MB of memory used by -on-write

* Background saving terminated with success

如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。

AOF重写时,Redis日志输出容如下:

* Background append only file rewriting started by pid 8937

* AOF rewrite child asks to stop sending diffs.

* Parent agreed to stop sending diffs. Finalizing AOF...

* Concatenating 0.00 MB of AOF diff received from parent.

* SYNC append only file rewrite performed

* AOF rewrite: 53 MB of memory used by -on-write

* Background AOF rewrite terminated with success

* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)

* Background AOF rewrite finished successfully

父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。

运维提示

编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。

内存消耗优化:

1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。

2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。

3.硬盘

·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:

a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。

b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。

c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。

d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示

配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。

5.3.3AOF追加阻塞

当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。

阻塞流程分析:

1)主线程负责写入AOF缓冲区。

2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。

3)主线程负责对比上次AOF同步时间:

·如果距上次同步成功时间在2秒内,主线程直接返回。

·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。

通过对AOF阻塞流程可以发现两个问题:

1)everysec配置最多可能丢失2秒数据,不是1秒。

2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。

AOF阻塞问题定位:

1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:

Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer

without waiting for fsync to complete, this may slow down Redis

2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。

3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。

5.4多实例部署

Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。

我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。

流程说明:

1)外部程序定时轮询监控机器(machine)上所有Redis实例。

2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。

3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。

4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。

5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。

5.5本章重点回顾

1)Redis提供了两种持久化方式:RDB和AOF。

2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。

3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。

4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。

5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。

6)子进程执行期间使用-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。

7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。

8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。

热点内容
java工程师面试问题 发布:2024-11-16 09:28:36 浏览:233
用什么引擎导出的安卓安装包不大 发布:2024-11-16 09:09:06 浏览:474
安卓手机如何设置转接 发布:2024-11-16 09:08:55 浏览:423
sql行业 发布:2024-11-16 09:04:07 浏览:295
如何查看电脑硬盘的接口速率缓存 发布:2024-11-16 08:59:42 浏览:221
c语言局部变量与全局变量 发布:2024-11-16 08:37:38 浏览:489
安卓苹果是什么意思啊 发布:2024-11-16 08:36:03 浏览:872
泛型方法编译 发布:2024-11-16 08:36:01 浏览:875
造梦西游记的密码和用户名是什么 发布:2024-11-16 08:30:22 浏览:339
cmake编译zlib出错 发布:2024-11-16 08:26:32 浏览:442