当前位置:首页 » 编程软件 » 编译原理文法类型判断实验心得

编译原理文法类型判断实验心得

发布时间: 2024-02-23 12:26:50

⑴ 四种文法的类型(编译原理)

乔姆斯基(Chomsky)按产生式的类型把文法分为四种类型:0、1、2、3型文法。

*在下文中的产生式中,箭头左边的大写字母为严格的非终结符,而其左边的小写字母不严格要求为非终结符,如[0型文法]中的第2条产生式。

【0型文法】

产生式形式:α→β

要求:箭头左边的α 至少 含有 一个非终结符 , 其余 不加任何限制

    例如,G:C→AaB

                     aA→a

                     B→b|Bb

【1型文法】

产生式形式:α→β

要求: |α|≤|β| (产生式左端的长度<=右端的长度),S→ε除外。

例如G: C→aAB

               aA→aBa

               B→b|Bb 

【2型文法】(上下文无关文法)

产生式形式:A→β,A∈VN(终结符) ,β∈V *(VN∪VT,即可为终结符也可为非终结符) 

说明:当以β替换A时,与A的上下文环境无关;

          大部分程序设计语言近似于2型文法。

【3型文法】(正规文法 / 右线性文法)

产生式形式:A→a,A→aB,

说明:a∈VT(终结符) ,  A,B∈VN(非终结符),即产生式右端的第一个符号必须为 终结符

例如 G:A→aB

              B→b|bB

【其他说明】对于这四种类型的文法:

*包含关系:0 > 1 > 2 > 3 (以'>'代替包含符,'A>B'译为A包含B)

*严格程度:3 > 2 > 1 > 0

*判断文法所属类型的顺序:3 → 2 → 1 → 0

⑵ 编译原理 LR0文法的判定

设G1、G2是两个文法,若L(G1)=L(G2)
,则称G1与G2等价,记作G1≡G2。
即:文法的等价性是指他们所定义的语言是一样的。
文法的化简是指消除如下无用产生式:

删除
A->A
形式的产生式(自定己);

删除不能从其推导出终结符串的产生式(不终结);

删除在推导中永不使用的产生式(不可用)。

⑶ 编译原理怎么判断是否为slr文法

LL(1)就是向前只搜索1个符号,即与FIRST()匹配,如果FIRST为空则还要考虑FELLOW.
LR需要构造一张LR分析表,此表用于当面临输入字符时,将它移进,规约(即自下而上分析思想),接受还是出错.
LR(0)找出句柄前缀,构造分析表,然后根据输入符号进行规约.
SLR(1)使用LR(0)时若有冲突,不知道规约,移进,活移进哪一个,所以需要向前搜索,则只把有问题的地方向前搜索一次.
LR(1)1.在每个项目中增加搜索符.2.举个列子如有A->α.Bβ,则还需将B的规则也加入.
LALR(1)就是假如两个产生式集相同则将它们合并为一个,几合并同心集.

⑷ 编译原理-LL1文法详细讲解

我们知道2型文法( CFG ),它的每个产生式类型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。

例如, 一个表达式的文法:

最终推导出 id + (id + id) 的句子,那么它的推导过程就会构成一颗树,即 CFG 分析树:

从分析树可以看出,我们从文法开始符号起,不断地利用产生式的右部替换产生式左部的非终结符,最终推导出我们想要的句子。这种方式我们称为自顶向下分析法。

从文法开始符号起,不断用非终结符的候选式(即产生式)替换当前句型中的非终结符,最终得到相应的句子。
在每一步推导过程中,我们需要做两个选择:

因为一个句型中,可能存在多个非终结符,我们就不确定选择那一个非终结符进行替换。
对于这种情况,我们就需要做强制规定,每次都选择句型中第一个非终结符进行替换(或者每次都选择句型中最后一个非终结符进行替换)。

自顶向下的语法分析采用最左推导方式,即总是选择每个句型的最左非终结符进行替换。

最终的结果是要推导出一个特定句子(例如 id + (id + id) )。
我们将特定句子看成一个输入字符串,而每一个非终结符对应一个处理方法,这个处理方法用来匹配输入字符串的部分,算法如下:

方法解析:

这种方式称为递归下降分析( Recursive-Descent Parsing ):

当选择的候选式不正确,就需要回溯( backtracking ),重新选择候选式,进行下一次尝试匹配。因为要不断的回溯,导致分析效率比较低。

这种方式叫做预测分析( Predictive Parsing ):

要实现预测分析,我们必须保证从文法开始符号起,每一个推导过程中,当前句型最左非终结符 A 对于当前输入字符 a ,只能得到唯一的 A 候选式。

根据上面的解决方法,我们首先想到,如果非终结符 A 的候选式只有一个以终结符 a 开头候选式不就行了么。
进而我们可以得出,如果一个非终结符 A ,它的候选式都是以终结符开头,并且这些终结符都各不相同,那么本身就符合预测分析了。

这就是S_文法,满足下面两个条件:

例子:

这就是一个典型的S_文法,它的每一个非终结符遇到任一终结符得到候选式是确定的。如 S -> aA | bAB , 只有遇到终结符 a 和 b 的时候,才能返回 S 的候选式,遇到其他终结符时,直接报错,匹配不成功。

虽然S_文法可以实现预测分析,但是从它的定义上看,S_文法不支持空产生式(ε产生式),极大地限制了它的应用。

什么是空产生式(ε产生式)?

例子

这里 A 有了空产生式,那么 S 的产生式组 S -> aA | bAB ,就可以是 a | bB ,这样 a , bb , bc 就变成这个文法 G 的新句子了。

根据预测分析的定义,非终结符对于任一终结符得到的产生式是确定的,要么能获取唯一的产生式,要么不匹配直接报错。

那么空产生式何时被选择呢?

由此可以引入非终结符 A 的后继符号集的概念:
定义: 由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符 a 的集合,就是这个非终结符 A 的后继符号集,记为 FOLLOW(A) 。

因此对于 A -> ε 空产生式,只要遇到非终结符 A 的后继符号集中的字符,可以选择这个空产生式。
那么对于 A -> a 这样的产生式,只要遇到终结符 a 就可以选择了。

由此我们引入的产生式可选集概念:
定义: 在进行推导时,选用非终结符 A 一个产生式 A→β 对应的输入符号的集合,记为 SELECT(A→β)

因为预测分析要求非终结符 A 对于输入字符 a ,只能得到唯一的 A 候选式。
那么对于一个文法 G 的所有产生式组,要求有相同左部的产生式,它们的可选集不相交。

在 S_文法基础上,我们允许有空产生式,但是要做限制:

将上面例子中的文法改造:

但是q_文法的产生式不能是非终结符打头,这就限制了其应用,因此引入LL(1)文法。

LL(1)文法允许产生式的右部首字符是非终结符,那么怎么得到这个产生式可选集。
我们知道对于产生式:

定义: 给定一个文法符号串 α , α 的 串首终结符集 FIRST(α) 被定义为可以从 α 推导出的所有串首终结符构成的集合。

定义已经了解清楚了,那么该如何求呢?
例如一个文法符号串 BCDe , 其中 B C D 都是非终结符, e 是终结符。

因此对于一个文法符号串 X1X2 … Xn ,求解 串首终结符集 FIRST(X1X2 … Xn) 算法:

但是这里有一个关键点,如何求非终结符的串首终结符集?

因此对于一个非终结符 A , 求解 串首终结符集 FIRST(A) 算法:

这里大家可能有个疑惑,怎么能将 FIRST(Bβ) 添加到 FIRST(A) 中,如果问文法符号串 Bβ 中包含非终结符 A ,就产生了循环调用的情况,该怎么办?

对于 串首终结符集 ,我想大家疑惑的点就是,串首终结符集到底是针对 文法符号串 的,还是针对 非终结符 的,这个容易弄混。
其实我们应该知道, 非终结符 本身就属于一个特殊的 文法符号串
而求解 文法符号串 的串首终结符集,其实就是要知道文法符号串中每个字符的串首终结符集:

上面章节我们知道了,对于非终结符 A 的 后继符号集 :
就是由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符的集合,记为 FOLLOW(A) 。

仔细想一下,什么样的终结符可以出现在非终结符 A 后面,应该是在产生式中就位于 A 后面的终结符。例如 S -> Aa ,那么终结符 a 肯定属于 FOLLOW(A) 。

因此求非终结符 A 的 后继符号集 算法:

如果非终结符 A 是产生式结尾,那么说明这个产生式左部非终结符后面能出现的终结符,也都可以出现在非终结符 A 后面。

我们可以求出 LL(1) 文法中每个产生式可选集:

根据产生式可选集,我们可以构建一个预测分析表,表中的每一行都是一个非终结符,表中的每一列都是一个终结符,包括结束符号 $ ,而表中的值就是产生式。
这样进行语法推导的时候,非终结符遇到当前输入字符,就可以从预测分析表中获取对应的产生式了。

有了预测分析表,我们就可以进行预测分析了,具体流程:

可以这么理解:

我们知道要实现预测分析,要求相同左部的产生式,它们的可选集是不相交。
但是有的文法结构不符合这个要求,要进行改造。

如果相同左部的多个产生式有共同前缀,那么它们的可选集必然相交。
例如:

那么如何进行改造呢?
其实很简单,进行如下转换:

如此文法的相同左部的产生式,它们的可选集是不相交,符合现预测分析。

这种改造方法称为 提取公因子算法

当我们自顶向下的语法分析时,就需要采用最左推导方式。
而这个时候,如果产生式左部和产生式右部首字符一样(即A→Aα),那么推导就可能陷入无限循环。
例如:

因此对于:

文法中不能包含这两种形式,不然最左推导就没办法进行。

例如:

它能够推导出如下:

你会惊奇的发现,它能推导出 b 和 (a)* (即由 0 个 a 或者无数个 a 生成的文法符号串)。其实就可以改造成:

因此消除 直接左递归 算法的一般形式:

例如:

消除间接左递归的方法就是直接带入消除,即

消除间接左递归算法:

这个算法看起来描述很多,其实理解起来很简单:

思考 : 我们通过 Ai -> Ajβ 来判断是不是间接左递归,那如果有产生式 Ai -> BAjβ 且 B -> ε ,那么它是不是间接左递归呢?
间接地我们可以推出如果一个产生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那么这个产生式是不是间接左递归。

⑸ 编译原理中,形式语言里怎么区分2型文法与3型文法

二型文法如下:
S->Ac
S->Sc
A->ab
A->aAb
三型文法如下:
S->aS
A->bA
B->cB
B->c
A->Bb
A、2型文法是上下文无关文法,表现在产生式上就是产生式的左部只有一个非终结备运贺符;3型文法从广义上仿派讲包括左线形文法、右线形文法和正规文法悄裤

B、左线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最左端。
C、右线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最右端

D、正规文法是右线形文法的一个子集,其产生式右部只有三种情况:
1)空串
2)只有一个终结符
3)只有一个终结符后接一个非终结符
E、所有的3型文法都是2型文法。

⑹ 编译原理-文法定义

文法定义公式如下:

Chomsky 文法分类将文法分为四种,0型文法( PSG )、1型文法( CSG )、2型文法( CFG )和3型文法( RG )。

又被称为无限制文法(Unrestricted Grammar), 或者短语结构文法(Phrase Structure Grammar)
定义: 对于产生式 α→β , α 至少包含一个非终结符。

为什么要叫无限制文法,明明它要求产生式的左部必须包含一个非终结符。

又被称为上下文有关文法(Context-Sensitive Grammar)
定义:对于产生式 α→β , |α| <= |β| , 仅仅 S→ε 除外

为什么叫做上下文有关文法?

一般情况下,这种产生式的形式为 α1Aα2→α1βα2

又被称为上下文无关文法(Context-Free Grammar)
定义:对任一产生式 α→β ,都有 α∈VN,β∈(VN∪VT)*

为什么叫上下文无关文法?

又被称为正则文法(Regular Grammar,RG),分为右线性(Right Linear)文法和左线性(Left Linear)文法。

定义: 对任一产生式 α→β ,都有 α∈VN,β最多两个字符元素,如果有二个字符必须是(终结符+非终结符)的格式,如果是一个字符,那么必须是终结符。

根据产生式右部非终结符位置不同,分为右线性文法和左线性文法。

可以看出,不同文法就是对产生式进行逐层的限制,所以各个文法是包含关系,即0型文法包含1型文法;1型文法又包含2型文法;2型文法最后包含3型文法。

⑺ 编译原理实验报告

#include<stdio.h>
void main()
{

int m=0,n=0,n1=0,n2=0,n3=0,zg,fzg,flag;
int bz[7]=;/*状态改变控制,1 表示可以改变状态zt值,0 表示不可以*/
int zt[7]=;/*状态值,2表示未定状态,1表示 是,0表示 否*/

char temp[100]="\0";/*用于求first集*/
char z[7];/*非总结符*/
char z1[7];/*总结符*/
char z2[7]="\0";/*gs[]文法中出现的标记个数的辅助字符 01234*/
char gs[100]="\0";/*文法,按顺序排成字符串*/

printf("请依次输入非终结符(不超过7个):");
gets(z);
while(z[m]!='\0')

fzg=m;//zg是非终结符个数

while(n<m)
//生成01234辅助字符
printf("您输入了:");
puts(z);
fflush(stdin);

printf("请依次输入终结符(不超过7个):");
gets(z1);
while(z1[n1]!='\0')

zg=n1;
printf("您输入了:");
puts(z1);
fflush(stdin);

printf("按照正确格式输入所有文法(总长度不超过100格式如下):");
printf("如果文法为(字符'k'表示空):\n");
printf("S-->AB S-->bC A-->k A-->b\n");
printf("输入:0SAB0SbC1Ak1Ab\n");
printf(" (注:数字01234表示第一二三四个非终结符)\n");

gets(gs);
fflush(stdin);
printf("您输入了:");
puts(gs);
m=0;
//对于输入文法字符串的转换,将每个文法式左部去除
while(gs[m]!='\0')
{
n=m;
if(gs[m]>='0'&&gs[m]<='9')
{
m++;
while(gs[m]!='\0')
{
gs[m]=gs[m+1];
m++;
}
//gs[m-1]='\0';
}
m=++n;
}

m=0;

//puts(gs);

/*情况一,直接判定是 形如: (A-->k) */
while(gs[m]!='\0')
{
if(gs[m]=='k')
{
zt[gs[m-1]-48]=1;
bz[gs[m-1]-48]=0;
}
m++;
}

/*情况二,直接判定--否 形如: (D-->aS ,D-->c) */
for(n=0;n<fzg;n++)
{
if(bz[n]==1)
{
m=0;
n2=0;
while(gs[m]!='\0')
{
if(z2[n]==gs[m])
{
if(gs[m+1]>=z1[0]&&gs[m+1]<=z1[n1-1])
zt[n]=0;
else //gs[m+1] 是非终结符n2做标记
}
//跳出循环,无法解决该情况,推到下面情况三
m++;
}
if(n2!=99) //完成所有扫描,未出现非终结符,得出结论zt[n]=0.bz[n]=0不允许再改变zt[n]
}
}

/*情况三,最终判定*/
do
{
flag=0;
for(n=0;n<fzg;n++)
{
if(bz[n]==1) //未得到判定
{ m=0;
while(gs[m]!='\0')
{
if(gs[m]==z2[n]) //判定gs[m]是辅助字符0123
{
m++;
while(gs[m]>='A'&&gs[m]<='Z')
{

n1=0;
for(n2=0;n2<fzg;n2++) //循环查找是gs[m]哪个非终结符
{
if(gs[m]==z[n2])
{
if(zt[n2]==1) //这个非终结符能推出空
zt[n]=1;
else if(bz[n2]==1) //这个非终结符 现在 不能推出空,但它的状态可改即它最终结果还未判定

else
//设 m1 做标记供下一if参考
break; //找到gs[m]是哪个非终结符,for循环完成任务,可以结束
}

}
if(n1==99) break;
m++;
}
}
m++;
}
if(zt[n]==1) bz[n]=0;
if(bz[n]==0) flag=1;//对应for下的第一个if(zt[n]==2)
}

}
}while(flag);

printf("结果是:\n");

for(m=0;m<5;m++)
{
switch(zt[m])
{
case 0:printf("%c---否\n",z[m]);break;
case 1:printf("%c---是\n",z[m]);break;
case 2:printf("%c---未定\n",z[m]);break;
}

}
/*
puts(gs);
puts(zt);
puts(z);
puts(z1);
puts(z2);
printf("%d,,,%d",fzg,zg);
*/

//下面求first集
//下面求first集

for(n=0;n<fzg;n++)

m=0;n=0;n1=0;n2=0;
while(gs[n]>='0'&&gs[n]<='9')
{
for(;m<fzg;m++)
{
if(n2!=m)
n1=0; //m=n2用于第二次以后的for循环中还原上次m的值

if(gs[n]==z2[m])
{
while(gs[n+1]>'9')
{
if(n1==0)
//如果是第一个直接保存

//不是第一个,先与字符数组中其它字符比较,没相同的才保存
else if(gs[n]>='a'&&gs[n]<='z'&&gs[n+1]>='A'&&gs[n+1]<='Z') //gs[n]是终结符 且 gs[n+1]是非终结符
;//什么也不做,程序继续n++,扫描下一个gs[n]

else
{
for(n3=0;n3<=n1;n3++)
{
if(temp[m*13+n3]==gs[n+1])
break;
}

if(n3>n1) //for循环结束是因为n3而不是break

}
n++;
}
break; //break位于if(gs[n]==z2[m]),对于gs[n]已找到z2[m]完成任务跳出for循环
}
}
n2=m; //存放该for循环中m的值
n++;
}
//进一步处理集除去非终结符
m=0;n=0;n1=0;n2=0;
for(m=0;m<fzg;m++)
{
if(flag!=m)
n1=0; //m=flag用于第二次以后的for循环中还原上次m的值

while(temp[m*13+n1]!='\0')
{
while(temp[m*13+n1]>='A'&&temp[m*13+n1]<='Z') //搜索非终结符
{
for(n=0;n<fzg;n++) //确定是哪个非终结符
{if(temp[m*13+n1]==z[n])
break;
}
while(temp[m*13+n1]!='\0') //从temp[n*13+n1]开始每个字符依次往前移动一

n1--;
while(temp[n*13+n2]!='\0') //把z[n]对应的first加入temp[m*13+n1]这个first中,每个字符依次加在最后
{
for(n3=0;n3<n1;n3++) //循环判定是否有相同的字符
{
if(temp[m*13+n3]==temp[n*13+n2])
break;
}
if(temp[n*13+n2]=='k'&&zt[m]==0) //那些不能推出 空,但是因为要加入 其他非终结符的first集 而可能含有 空
n2++;
else if(n3>=n1) //for循环结束是因为n3而不是break ,即无相同字符

else n2++;
}

n1=0;
n2=0;
}

n1++;
}
flag=m; //存放该for循环中m的值
}

//非终结符的first集输出
m=0;n1=0;
for(m=0;m<fzg;m++)
{
n1=0;
printf("非终结符 %c 的first集是: ",z[m]);
while(temp[m*13+n1]!='\0')
{
printf("%c",temp[m*13+n1]);
n1++;
}
printf("\n");
}

}

⑻ 编译原理实现判断是不是一个文法的句子

构造LL(1)语法分析程序,任意输入一个文法符号串,并判断它是否为文法的一个句子。程序要求为该文法构造预测分析表,并按照预测分析算法对输入串进行语法分析,判别程序是否符合已知的语法规则,如果不符合(编译出错),则输出错误信息。

⑼ 文法的类型

文法形式
在计算机科学中,文法是编译原理的基础,是描述一门程序设计语言和实现其编译器的方法。文法的描述多用BNF(巴克斯范式),而另一个重要的概念:正则表达式,也是文法的另一种形式。
文法分类
自从乔姆斯基(Chomsky)于1956年建立形式语言的描述以来,形式语言的理论发展很快。这种理论对计算机科学有着深刻的影响,特别是对程序设计语言的设计、编译方法和计算复杂性等方面更有重大的作用。
乔姆斯基把文法分成四种类型,即0型、1型、2型和3型。这几类文法的差别在于对产生式施加不同的限制。
多数程序设计语言的单词的语法都能用正规文法或3型文法来描述。
3型文法G=(VN,VT,P,S)的P中的规则有两种形式:一种是前面定义的形式,即:A→aB或A→a其中A,B∈VN ,a∈VT*,另一种形式是:A→Ba或A→a,前者称为右线性文仿升法,后者称为左线性文法。正规文法所描述的是VT*上的正规集。
四个文法类的定义是逐渐增加限制的,因此每一种正规文法都是上下文无关的,每一种上下文无关文法都是上下文有关的,而每一种上下文有关文法都是0型文法。称0型文法产生的语言为0型语言。上下文有关文法、上下文无关文法和正规文法产生的语言分别称为上下文有关语言、上下文无关语言和正规语言。
类型说明
设G=(VN,VT,P,S),如果它的每个产清搜生式α→β是这样一种结构:α∈( VN∪VT )*且至少含有一个非终结符,而β∈( VN∪VT )*,则G是一个0型文法。
0型文法也称短语文法。一个非常重要的理论结果是,0型文法的能力相当于图灵机(Turing)。或者说,任何0型语言都是递归可枚举的;反之,递归可枚举集必定是一个0型语言。
对0型文法产生式的形式作某些限制,以给出1,2和3型文法的定义。
设G=(VN,VT,P,S)为一文法,若P中的每一个产生式α→β均满足|β|≥|α| ,仅仅S→ε除外,则文法G是1型或上下文有关的。
在有些文献给的定义中,将上下文有关文法的产生式的形式描述为α1Aα2→α1βα2,其中α1、α2和β都在( VN∪VT
)*中(即在V*中),β≠ε,A在VN中。这种定义与前边的定义等价。但它更能体现上下文有关这一术语,因为只有A出现在α1和α2的上下文中,才允许用β取代A。
设G=(VN,VT,P,S),若P中的每一个产生式α→β满足:α是一非终结符,β∈( VN∪VT )*则此文法称为2型的或上下文无关的。有时将2型文法的产生式表示为形如:A→β其中A∈VN,也就是说用β取代非终结符A时,与A所在的上下文无关,因此取名为上下文无关文法。
例4.1和例4.2中的文法都是上下文无关的,下面我们再给出一个例子(例4.4),例中的文法G是上下文无关文法,G的语言是由相同个数的a和b所组成的{a,b}*上的串。
设G=(VN,VT,P,S),若P中的每一个产生式的形式都是A→aB或A→a,其中A和B都是非终结符,a是终结符,则G是3型文法或正规文法。
文法G定义为四元组(VN,VT,P,S )其中
VN:非终结符号(或语法实体,或变量)集;
VT:终结符号集;
P: 规则的集合;
VN,VT和P是 非空有穷集。
S:称作识别符号或开始符号的一个非终结符,它至少要在一条产生式中作为左部出现。
VN和VT不含公共的元素,即VN ∩ VT = φ
用V表示VN ∪ VT ,称为文法G的字母表或字汇表
规则答大历,也称重写规则、产生式或生成式,是形如→或 ∷=的( ,)有序对,其中是字母表V的正闭包V+中的一个符号,是V*中的一个符号。  称为规则的左部,  称作规则的右部。

热点内容
linux下ntp服务器搭建 发布:2024-09-08 08:26:46 浏览:742
db2新建数据库 发布:2024-09-08 08:10:19 浏览:171
频率计源码 发布:2024-09-08 07:40:26 浏览:778
奥迪a6哪个配置带后排加热 发布:2024-09-08 07:06:32 浏览:101
linux修改apache端口 发布:2024-09-08 07:05:49 浏览:209
有多少个不同的密码子 发布:2024-09-08 07:00:46 浏览:566
linux搭建mysql服务器配置 发布:2024-09-08 06:50:02 浏览:995
加上www不能访问 发布:2024-09-08 06:39:52 浏览:811
银行支付密码器怎么用 发布:2024-09-08 06:39:52 浏览:513
苹果手机清理浏览器缓存怎么清理缓存 发布:2024-09-08 06:31:32 浏览:554