当前位置:首页 » 编程软件 » mboot编译时间

mboot编译时间

发布时间: 2024-01-17 12:30:54

1. 关于ubuntu内核编译的问题

解决办法 修改 menu.lst 将 root=/UUIDxxxxxxx 这个改为 root=/dev/sdax
另外 从Filesystem type is ntfs.partition type 0x07 这一行我大概可看出,你是wubi安装的, 这种情况 我建议你重新编译内核并生成initrd, 因为内核不支持uuid的,initrd才支持,如果把filesystem编译进内核了,启动不用initrd.img的话,就只能用root=/dev/sdax的参数作为内核引导参数…

所以关键在于 一定要打开initrd支持并生成initrd

至于具体在那里,我这边环境所限无法告知, 麻烦你自己在make menuconfig里面仔细看看或者google一下

/dev/sdxx 是你的硬盘的/的设备名称 可以用正常启动的内核引导后 输入sudo df -h或者 sudo fdisk -l

目前的机器来讲 编译20分钟很正常, 我的内核优化的很小 大概十分钟左右就编译完了 .

另外 内核源码解开后会占用接近200M的空间, 而gcc编译内核和大型软件时候产生的临时文件占用好几百M乃至上G是很常见的的, 可以进入源代码文件夹运行 make clean && make mrproper 来清理一下

2. ubuntu内核编译需要多长时间

在分析linux内核源码的过程中,要是能够修改内核源码并运行修改后的内核,我想肯定是令人高兴的事,哪怕第一次修改仅仅是在启动时打印一行"Hello, Wang Jiankun!",肯定也是令我高兴的。为了能成功编译修改后的内核,今天先编译一遍内核。
为了有一个完整的记录,今天的起点是一台裸机。
1、在裸机上安装一个最小的debian系统
为了能够尽可能清晰的显示编译一个内核所需要的组件,在安装系统时,仅仅安装最小系统,然后需要什么,就使用apt-get安装什么。
使用网络安装,在安装过程中出现Software selection界面时不要选择任何选项,这样安装的系统将是最小的系统。
为了使用ssh远程登录,最小系统安装完成后,要安装ssh服务器并且要设置静态ip地址(debian安装过程中是通过dhcp获取的ip地址)。
2、安装ssh服务器
apt-get install ssh
3、设置静态ip地址
修改文件/etc/network/interfaces,其中蓝色部分是增加的,红色部分是屏蔽掉的,黑色部分是没有变化的。
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
allow-hotplug eth0
# Wang Jiankun commented the following line
#iface eth0 inet dhcp
# Wang Jiankun added the the following lines
iface eth0 inet static
address 192.168.1.251
netmask 255.255.255.0
broadcast 192.168.1.255
network 192.168.1.0
gateway 192.168.1.1
重启系统后,修改将生效。
4、通过wget下载linux内核源码
administrator@wangjk:~/kernel$ wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.19.tar.bz2
5、解压文件linux-2.6.19.tar.bz2
administrator@wangjk:~/kernel$ tar jxf linux-2.6.19.tar.bz2
tar: bzip2: Cannot exec: No such file or directory
tar: Error is not recoverable: exiting now
tar: Child returned status 2
tar: Error exit delayed from previous errors
administrator@wangjk:~/kernel$
看来是没有bzip2这个包,那就安装一个:
apt-get install bzip2
6、安装debian的kernel-package软件包
在安装kernel-package软件包时,最好使用命令:apt-get build-dep kernel-package,而不要使用命令:
apt-get install kernel-package,后者安装的软件包是前者的子集,使用后者安装kernel-package软件包后,执行make menuconfig命令会出现头文件找不到的错误,如下所示:
administrator@wangjk:~/kernel/linux-2.6.19$ make menuconfig
HOSTCC scripts/basic/fixdep
scripts/basic/fixdep.c:105:23: error: sys/types.h: No such file or directory
scripts/basic/fixdep.c:106:22: error: sys/stat.h: No such file or directory
scripts/basic/fixdep.c:107:22: error: sys/mman.h: No such file or directory
scripts/basic/fixdep.c:108:20: error: unistd.h: No such file or directory
scripts/basic/fixdep.c:109:19: error: fcntl.h: No such file or directory
scripts/basic/fixdep.c:110:20: error: string.h: No such file or directory
scripts/basic/fixdep.c:111:20: error: stdlib.h: No such file or directory
scripts/basic/fixdep.c:112:19: error: stdio.h: No such file or directory
主要是因为libc6-dev软件包没有安装。所以即使使用了apt-get install kernel-package还得使用apt-get build-dep kernel-package,不如一次使用apt-get build-dep kernel-package完成方便。
7、安装libncurses5-dev软件包来支持make menuconfig
通过apt-get build-dep kernel-package安装完成kernel-package后,执行make menuconfig仍然报错,如下所示:
administrator@wangjk:~/kernel/linux-2.6.19$ make menuconfig
HOSTCC scripts/kconfig/lxdialog/checklist.o
In file included from scripts/kconfig/lxdialog/checklist.c:24:
scripts/kconfig/lxdialog/dialog.h:32:20: error: curses.h: No such file or directory
In file included from scripts/kconfig/lxdialog/checklist.c:24:
scripts/kconfig/lxdialog/dialog.h:97: error: expected specifier-qualifier-list before 'chtype'
scripts/kconfig/lxdialog/dialog.h:187: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:193: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:195: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:196: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:197: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:198: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:200: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:31: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:59: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:95: error: expected ')' before '*' token
[省略其后部分]
原来是最小系统不支持图形的原因,安装libncurses5-dev后即可。
8、将系统的config文件拷贝到内核目录下
cp /boot/config-2.6.18-6-686 ./.config
9、执行make menuconfig
虽然是将原来系统的config文件拷贝过来的,但是如果所以的配置都采用默认的配置仍然会有问题,在我的系统上在加载文件系统时会死掉,所以还是要做必要的配置,主要是将scsi和sata部分编译进内核而不要编译成模块,如下所示:
Device Drivers --->
Serial ATA (prod) and Parallel ATA (experimental) drivers --->
SCSI device support --->
将蓝色两部分级联的选项全部编译进内核(其实没有必要全部,但为了简单起见,暂时这样做)。
10、安装fakeroot软件包
11、编译内核
fakeroot make-kpkg --initrd --revision=custom.1.0 kernel_image
12、安装内核
wangjk:/home/administrator/kernel# dpkg -i linux-image-2.6.19_custom.1.0_i386.deb
Selecting previously deselected package linux-image-2.6.19.
(Reading database ... 17679 files and directories currently installed.)
Unpacking linux-image-2.6.19 (from linux-image-2.6.19_custom.1.0_i386.deb) ...
Done.
Setting up linux-image-2.6.19 (custom.1.0) ...
Running depmod.
Finding valid ramdisk creators.
Using mkinitramfs-kpkg to build the ramdisk.
Running postinst hook script /sbin/update-grub.
You shouldn't call /sbin/update-grub. Please call /usr/sbin/update-grub instead!
Searching for GRUB installation directory ... found: /boot/grub
Searching for default file ... found: /boot/grub/default
Testing for an existing GRUB menu.lst file ... found: /boot/grub/menu.lst
Searching for splash image ... none found, skipping ...
Found kernel: /boot/vmlinuz-2.6.19
Found kernel: /boot/vmlinuz-2.6.18-6-686
Updating /boot/grub/menu.lst ... done
13、重启系统引导新内核后查看版本号
administrator@wangjk:~$ cat /proc/version
Linux version 2.6.19 (root@wangjk) (gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Thu May 7 21:52:10 CST 2009
administrator@wangjk:~$
可以看出已经是我编译的内核了。

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/jiankun_wang/archive/2009/05/04/4147806.aspx

------------------------------------

ubuntu不带linux内核源码,需要自己下载安装。
1,查看自己的内核版本
uname -r
2,查看源内的内核源码类表
apt-cache search linux-source
3,下载安装内核源代码
sudo apt-get install linux-source-2.6.27 //我选的是这一个,自己看着办吧
4,等待........

下载完成后,在/usr/src下会有一个文件名为linux-source-2.6.xx.tar.bz2的压缩
5,解压缩包
tar jxvf linux-source-2.6.27.tar.bz2 //看清自己的版本

解压后会生成一个源代码目录/usr/src/linux-source-2.6.27
6,进入源码目录后,配置文件
make oldconfig
7,生成内核
make
8,疯狂等待,大约1个多小时

9,编译模块
make moles
10,安装模块
make moles_install

大功告成!^_^
下面说一下Makefile文件

$(MAKE) -C $(KERNELDIR) M=$(PWD) moles_install #PWD当前工作目录的变量
obj-m := hello.o
#hello.o是你要生成的驱动,以后可以自己改
KERNELDIR:=/lib/moles/2.6.27-7-generic/build
#这里别抄,写成你自己的版本,这个目录执行了内核源码目录
PWD:=$(shell pwd) #将当前工作目录赋值该PWD
moles:
$(MAKE) -C $(KERNELDIR) M=$(PWD) moles
moles_install:

下面是一个经典的Hello,world!例子自己make一下就行了。
#include <linux/init.h>
#include <linux/mole.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void)
{
printk(KERN_ALERT "Hello, world!\n");
return 0;
}
static void hello_exit(void)
{
printk(KERN_ALERT"Goodbye, cruel world!\n");
}
mole_init(hello_init);
mole_exit(hello_exit);

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/unikingest/archive/2009/03/10/3977747.aspx

-----------------------------------------------------------------------------

修改的这篇文章,自己加了几个注意点
http://blog.theosoft.net/article.asp?id=57

第一次的Linux kernel上机内容是编译一个内核。我用的是Ubuntu,有很多地方和其它 Linux不一样,所以就来把我的过程写下来,以后也好有个参照
首先当然是下载内核源代码,如果你要最新的内核,可以去ftp.kernel.org。当然,国内速度可能会很慢。如果你是教育网用户,可以去上海交大的镜像站下载,地址是http://ftp.sjtu.e.cn/sites/ftp.kernel.org/,缺点就是没有最新的内核(更新需要一定的时间)。
==================================================备注
如果是就是编译ubuntu本省自带的内核,只需要
新立得搜索linux souce,下载带ubuntupatch的kernel的source code。
sudo apt-get source linux-source-2.6.27
==================================================备注
我下载的是linux-2.6.19.2.tar.gz可以下到的最新版本了。下完之后当然是解压缩。不过还不能直接编译,因为Ubuntu的默认安装里缺少必要的组建。打开终端,输入一下命令:
sudo -i
apt-get install build-essential kernel-package libncurses5-dev
然后到新立得里把所有以ncurses开头的软件包全部装上,这样就可以开始编译内核了。
先运行以下命令,复制当前内核的配置文件。
cp /boot/config-`uname -r` ./.config
然后
make menuconfig

选择 "Load an Alternate Configuration File",再选择你刚才拷贝过来的.config文件作为配置文件。然后确定。当结束后,你选择退出时,会提示问你 "Do you wish to save your new kernel configuration?"选择yes即可。
接下来就要编译了。输入命令:
make
你也可以将编译任务分成2个线程来执行,只要输入:
make -j2
编译一般需要1~1.5小时左右,就看cpu的性能如何
编译完成后,开始安装:
make mole_install
make install
然后添加引导信息,不过之前还是要装一个组件initramfs-tools,装完以后输入:
mkinitramfs -o /boot/initrd.img-2.X.XX /lib/moles/2.X.XX
==================================================备注
后面的参数不要忘记了,否则启动新内核会出现错误:
WARNING: Couldn’t open directory /lib/moles/2.6.15.7-ubuntu1: No such file or directory
FATAL: Could not open /lib/moles/2.6.15.7-ubuntu1/moles.dep.temp for writing: No such file or directory
==================================================备注
最后打开 /boot/grub/menu.lst
在 ## ## End Default Options ## 下面添加类似下面的两段
title Ubuntu, kernel 2.6.19.2
root (hd0,4)
kernel /vmlinuz-2.6.19.2 root=/dev/hdd6
initrd /initrd.img-2.6.19.2
savedefault
boot

title Ubuntu, kernel 2.6.19.2 (recovery mode)
root (hd0,4)
kernel /vmlinuz-2.6.19.2 root=/dev/hdd6 ro single
initrd /initrd.img-2.6.19.2
boot
注意 root和kernel字段要模仿menu.lst下面已有的内容写。下面是 (hd0,4),那么你也写(hd0,4),下面写root=/dev/hdd6,你也写root=/dev/hdd6,只是内核的版本号改为现在编译的版本号。然后重新启动计算机,在GRUB中选择新内核启动。如果启动失败,你可以重启选择老内核。

3. 如何将android linux烧到Raspberry Pi及其调试

一.Raspberry Pi入门向导。

可以在以下地址下载Raspberry向导


2.构建android framework

命令如下:

cd <your_android_path>

source build/envsetup.sh

lunch


显示lunch菜单如下:

You’re building on Linux


Lunch menu… pick a combo:

1. full-eng

2. full_x86-eng

3. simulator

4. full_rpi-eng

5. cyanogen_generic-eng

6. cyanogen_rpi-eng

选择第6个菜单。

然后进行编译

make -j8

等待编译成功,这可能需要几十分钟。


编译成功之后将”system”目录复制到root目录下,接下来我们可能会用到。

命令如下:

cd <your_android_path>

cp -r system out/target/proct/rpi/root


ps:编译时如果jdk版本不对,可将其改成jdk1.6


五.如何在Raspberry Pi上跑android linux内核?


1.准备一张存储空间2G以上的SD卡及相应读卡器。


2.下载arch linux镜像文件

用wget工具下载镜像文件:

wget http://files.velocix.com/c1410/images/archlinuxarm/archlinux-hf-2012-09-18/archlinux-hf-2012-09-18.zip

解压:

unzip archlinux-hf-2012-09-18.zip

成功之后,你会在当前目录下发现一个镜像文件。


3.烧linux镜像文件。

sudo dd bs=4M if=archlinux-hf-2012-09-18.img of=/dev/sdb

sudo sync

ps:/dev/sdb是SD卡在主机上的设备文件。不同的电脑可能不同。


4.用android linux内核代替这个内核。

做完上述步骤之后,当你把SD卡插在电脑上,你会发现有两个分区:一个是引导区,另一个是文件系统区。

用android linux内核代替引导区的kernel.img。

cp -uv <your_android_linux_path>/arch/arm/boot/zImage <your_sdcard_boot_partition>/kernel.img


5.用android linux文件系统代替这个linux文件系统

rm -rf <your_sdcard_file_system_partition>

cp -r <your_android_source_code_path>/out/target/proct/rpi/root/* <your_sdcard_file_system_partition>


6.配置内核命令行cmdline.txt

Edit the <your_sdcard_boot_partition>/cmdling.txt, and replace “init=/…” with “init=/init”


7.做完这些之后就可以在Raspberry Pi上跑这个android linux内核。


六.如何为Android linux做一张可引导的SD卡


1.删除已有分区,如果没有就不用删了。

Command(m for help):p


Disk /dev/sdb: 15.7 GB, 15707668480 bytes

64 heads, 32 sectors/track, 14980 cylinders, total 30668085 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0×00000000


sudo fdisk/dev/sdb


Command(m for help):d

Partition number(1-4):1


Command(m for help):d

Selected partition 2


Command (m for help): p


Disk /dev/sdb: 15.7 GB, 15707668480 bytes

64 heads, 32 sectors/track, 14980 cylinders, total 30679040 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0×00000000

Device Boot Start End Blocks Id System


Command(m for help):w

ps:确定删除之后,卸掉SD卡,然后再装上。


以bytes问单位记下SD卡的大小。后面的步骤会用到。

然后进入”Expert mode”。


Command(m for help):x


将这个SD卡设置为255个磁面,63个扇区和磁柱数量(不同的SD/mmc卡有着不同的此柱数量)

Expert command (m for help): h

Number of heads (1-256, default 64): 255


Expert command (m for help): s

Number of sectors (1-63, default 32): 63


ps:在下一步开始前,先要计算磁柱数量,计算过程如下:

B:SD卡以bytes为单位的大小(前面已经记住了即:15707668480)

C:磁柱的数量

C=B/255/63/512


例如:我的SD卡大小是16G(15707668480)

C=15707668480/255/63/512=1909.68191721,约等于1909.


Expert command (m for help): c

Number of cylinders (1-1048576, default 14980): 1909

Expert command (m for help): r


2.新建分区

如果你的SD卡已经分区,请按照上述步骤删除分区。接下来,我们将创建两个分区,一个是引导区,用来存放内核镜像等文件;另一个文件系统区存放android linux文件系统。


Command (m for help): n

Partition type:

p primary (0 primary, 0 extended, 4 free)

e extended

Select (default p): p

Partition number (1-4, default 1):

Using default value 1

First sector (2048-30679039, default 2048):

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-30679039, default 30679039): +128M

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): c

Changed system type of partition 1 to c (W95 FAT32 (LBA))

Command (m for help): a

Partition number (1-4): 1

Command (m for help): n

Partition type:

p primary (1 primary, 0 extended, 3 free)

e extended

Select (default p): p

Partition number (1-4, default 2):

Using default value 2

First sector (264192-30679039, default 264192):

Using default value 264192

Last sector, +sectors or +size{K,M,G} (264192-30679039, default 30679039):

Using default value 30679039

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x

partitions, please see the fdisk manual page for additional

information.

Syncing disks.


ok,分区成功,现在我们有两个分区,接下我们对分区进行格式化。


3.格式化分区

对引导区进行格式化:


sudo mkfs.msdos -F 32 /dev/sdb1 -n BOOT

mkfs.msdos 3.0.12 (29 Oct 2011)


对文件系统区进行格式化:

sudo mkfs.ext3 /dev/sdb2 -L ROOTFS

mke2fs 1.42 (29-Nov-2011)

Filesystem label=ROOTFS

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

950976 inodes, 3801856 blocks

190092 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=3896508416

117 block groups

32768 blocks per group, 32768 fragments per group

8128 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done


4.设置引导区

引导区必须包含以下文件,你可以从官方镜像里获取(bootable/fat32 partition)也可以从书面步骤中复制过来:

bootcode.bin:第二阶段的引导程序,

loader.bin:第三阶段的引导程序,

start.elf:GPU二进制固件映像,

kernel.img操作系统的内核镜像文件,

cmdline.txt:传递给内核的参数.


5.设置root文件系统分区

ROOTFS分区包含android文件系统,是从<your_android_framework_path>/out/target/proct/rpi/root复制过来的。

cp -r <your_android_framework_path>/out/target/proct/rpi/root/* /media/ROOTFS/


6.完成上述步骤之后,将其放在Raspberry Pi上跑。


七.如何在Raspberry Pi使用adb?


1.查看网络

当android linux在Raspberry Pi运行时,切换到控制台,执行以下命令:

ifconfig eth0

记下ip地址。

如果不能找到ip,可以输入以下命令:/system/xbin/dhcp-eth0,来启动网络连接程序。

ps:如果屏幕没有显示控制台,只要按CTRL+ALT+F2即可切换到控制台。如果你想要切换到Android界面,只要按CTRL+ALT+F7即可。


2.远程连接adb服务器

在主机上执行以下命令即可与同一局域网的Raspberry Pi相连

adb connect ip

连接成功后,你就可以用adb工具输出日志,执行shell命令等。


3.也可以用数据线连接主机,直接在主机上调试。

进入调试的命令为:

screen /dev/ttyUSB0 115200


名词解释:

交叉编译(cross compile):交叉编译呢,简单地说,就是在一个平台上生成另一个平台上的可执行代码。这里需要注意的是所谓 平台,实际上包含两个概念:体系结构(Architecture)、操作系统(Operating System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。

4. 整体编译Android系统,大家用了多少时间

我自己实际编译ICS4.0.4源码情况:acer台式机,3.2Ghz cpu,4核,8GB/1600hz内存,整体编译(含u-boot、kernel、boot.img和system.img)需要1小时10分钟。编译时,使用make -j8(因为硬件cpu是4线程的,故使用2倍线程数)。之后的增量编译,一般需要5~10分钟即可。

5. Android开机速度优化初探

Android的开机速度,基本上没人说快的,通常移植完系统后,马上要看的事情就是优化开机时间,以下是简单回忆以下以前做优化的那些事。

优化开机时间,通常做的首先是那有有没有BUG,明显不合理的先解决,由于开发阶段稳定性腊扰带问题,一些地方可能延时加的大,或者频率设的低,先记下来,后面定期还会再看。这些先不看的话,一般拿到机器,我们统计开机时间,主要看如下几个时间段分布:

开机按键时间、亮屏时间(基本固定,除非弄错了,基本检查一遍确定)

uboot启动时间

内核启动后到bootanim退出时间

可以通过添加打印mole init的李汪log,来check每个mole初始化时的时间。从而找到花费时间比较多的mole:

--- a/init/main.c

+++ b/init/main.c

@@-785,7+785,7@@int__init_or_mole

do_one_initcall(initcall_tfn)

if(initcall_blacklisted(fn))

return

-EPERM;

-if(initcall_debug)

+if(1)

                ret =

do_one_initcall_debug(fn);

-3 优化建议:

preloadClasses()与preloadResources()可以放到两个线程里面跑。

修改zygote的nice值,及thread priority。

http://androidxref.com/6.0.1_r10/xref/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java#590

中增加如下的修改:

在  EventLog . writeEvent ( LOG_BOOT_PROGRESS_PRELOAD_START , 592 SystemClock . uptimeMillis ()); 593 preload (); 594 EventLog . writeEvent ( LOG_BOOT_PROGRESS_PRELOAD_END , 595 SystemClock . uptimeMillis ()); 前增加修改

/* 20151013 optimize android boot begin */

//get the default priority.

int defaultPriority = Process.getThreadPriority(Process.myPid()) ;

//increase the priority .

Process.setThreadPriority(Process.THREAD_PRIORITY_AUDIO) ;

在 gcAndFinalize (); 增加

Process.setThreadPriority(defaultPriority) ;

/*  20151013 optimize android boot end */

-2 系统剪裁也有助于提高系统轮芦的开机速度

提升CPU频率 - 将所有CPU切换至性能模式

adb shell stop perf-hal-1-0

adb shell "echo 1 > /sys/devices/system/cpu/cpu0/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu1/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu2/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu3/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu4/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu5/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu6/online"

adb shell "echo 1 > /sys/devices/system/cpu/cpu7/online"

adb shell "echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu4/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu5/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu6/cpufreq/scaling_governor"

adb shell "echo performance > /sys/devices/system/cpu/cpu7/cpufreq/scaling_governor"

adb shell "echo performance > /sys/class/devfreq/soc:qcom,cpubw/governor"

adb shell "echo performance > /sys/class/devfreq/soc:qcom,mincpubw/governor"

adb shell "echo performance > /sys/class/devfreq/soc:qcom,memlat-cpu0/governor"

adb shell "echo performance > /sys/class/devfreq/soc:qcom, memlat-cpu6/governor"

提升GPU频率

adb shell "echo 0 > /sys/class/kgsl/kgsl-3d0/min_pwrlevel"

adb shell "echo 1 > /sys/class/kgsl/kgsl-3d0/force_clk_on"

adb shell "echo performance > /sys/class/kgsl/kgsl-3d0/devfreq/governor"

-1 电源优化

on init

    # Disable UFS powersaving

    write /sys/devices/soc/${ro.boot.bootdevice}/clkscale_enable 0

    write /sys/devices/soc/${ro.boot.bootdevice}/clkgate_enable 0

    write /sys/devices/soc/${ro.boot.bootdevice}/hibern8_on_idle_enable 0

    write /sys/mole/lpm_levels/parameters/sleep_disabled Y

on property:sys.boot_completed=1

    # Enable UFS powersaving

    write /sys/devices/soc/${ro.boot.bootdevice}/clkscale_enable 1

    write /sys/devices/soc/${ro.boot.bootdevice}/clkgate_enable 1

    write /sys/devices/soc/${ro.boot.bootdevice}/hibern8_on_idle_enable 1

    write /sys/mole/lpm_levels/parameters/sleep_disabled N

on charger

    # Enable UFS powersaving

    write /sys/devices/soc/${ro.boot.bootdevice}/clkscale_enable 1

    write /sys/devices/soc/${ro.boot.bootdevice}/clkgate_enable 1

    write /sys/devices/soc/${ro.boot.bootdevice}/hibern8_on_idle_enable 1

    write /sys/class/typec/port0/port_type sink

    write /sys/mole/lpm_levels/parameters/sleep_disabled N

0 bootgraph 用来分析内核功能, 在kernel cmdline 增加 initcall_debug ,然后dmesg > boot.log  bootgraph.pl boot.log >  boot.svg

1通过一个比gzip更快的方式去解压内核镜像;

2 去掉系统中一些不必要的log打印;

3 去掉一些系统中不需要的驱动模块;

4 启动时即以最大频率(cpu/DDR)且多核一起跑;

5 将一些耗时大,对启动顺序没有要求的驱动通过异步方式进行加载(如下所示)

这里我们主要关注的是第三个,也是优化的重点。这部分时间,具体都在干啥,瓶颈是哪,可以通过bootchart很清楚的看到。以下结合以前抓的图,简要说一下(图是很久之前抓的,比较懒,没有再跑一遍过程)

上图中bootanim的退出时间没有截出来,实际图是有的,大约是33s的时候结束。

这里分析时,我们是分了几个时间段:

1 内核开始启动,到init进程开始执行。这个可以通过log看到。

2 init进程执行,主要是处理init.rc中的命令,到core和mainl类服务开始启动的时间,上图中可以看到,服务大体都在一个时间点起来的,约7.5S时,这之前的一大段空窗期,也是要重点看的

3 zygote启动时间

4 systemserver中各个服务启动时间

5 应用启动(systemui/launcher/keyguard..)

以上,具体分析看每段时间:

第一点另外处理,具体分析打印看是否有异常,这个值一般是很小的,不合理要和BSP同事一起查一下原因。

第二个主要是init.rc执行各种命令,这个可以通过在execute_one_command函数中统计测量 ,比如大于100ms的命令打印出来,再分析定位原因,这里命令执行时间长基本算BUG,要和BSP工程师一起解决。

第三点主要zygote启动问题,主要慢的原因,是加载资源和类库,这个要读nand,一般卡的时间比较长,图中可以看到,zygote进程一溜的小粉红,说明IO较多。这个preload过程消耗的时间,在logcat的log中,也会打印的,一般来说,都是在近10S左右。

第四个,zygote初始化完后,会fork system_server。 system_server进程启动,耗时也是较长的。根据以前统计分析的结果,这里的服务启动,基本上都是花在packageManagerService的PackageScan中,这又是一个读文件,卡在文件读取中,时间长短,和预制app及安装的app数量有关

第五个时间,是基本都准备ready后,启动launcher等应用了,启动完成后,systemServer请求SurfaceFlinger杀了bootanimation,就启动完成了。

以上时间中,主要要优化的,还是第三步和第四步的IO慢问题,其他可优化的不多。比如CPU,常开四核performance模式启动,也并没提升多少,一般我们就不管了这个了。

咋优化?

确定优化方向后主要看怎么优化这两段耗时的地方:

1. Zygote的preload 资源和class

2. PackageManagerService的包扫描

这里的第一个,最早之前有人直接是去掉preload或删减,虽然可以加快一点开机速度,但是捡了芝麻丢了西瓜,根本不能这样干~

我们最早做的实现方式,

2.1 是将preload做并行处理,毕竟现在都是多核处理器了,而且是preload是加载后还要解析处理的,并行会有一定幅度提升。

对于包扫描,这个不好拆成并行任务,不像preload那么简单干净。考虑过将PackageManager的信息序列化后存起来,下次开机就不扫了,不过看起来改动有点大,不太好搞,也放弃了。

PackageManagerService扫描、检查APK安装包信息

2.2 PMS对/system/framework,/system/app,/data/app,/data/app-private目录中的APK扫描耗费了大量的时间,如果预置的三方应用很多,这样启动的时间就会越长。

优化建议:

2.3 /system/app下的应用,如果是预置应用,在Android.mk建议加上LOCAL_DEX_PREOPT := true控制,在/system/vendor下的预置应用,如果此应用编译时间比较长的,也使用上LOCAL_DEX_PREOPT := true

2.4 尽量减少data区内置app的数量,这个会严重影响开机速度,特别是第一次的开机速度。放在system的app 尽量生成odex 这样会加快开机速度。

最后我们的实现的方式,就是linux上用的较多的readahead机制。具体实现细节就不展开说了,原理就是:

1. 统计开机过程中,读取的块数据信息,记录下来保存

2.再次开机,通过记录下来的块数据读取信息,直接起一个服务,预先开始读,zygote或packagemanagerservice要读文件的时候,文件数据已经在cache中了。

实际用下来,这一招特别好,优化非常明显。以下是实现了一个readahead后的bootchart图:

可以看到:

1. zygote和system_server都提速了

2. zygote和system_server的IO时间,都降低非常大

3. 主要IO时间,跑到readahead进程中去了。

不过,以上实现,还是有可优化的地方:

1. readahead进程可以再提前,在system分区挂载后立刻启动,这样zygote中的IO应该可以再减小

2. 对system_server的IO,此时readahead已经结束了,按理不应该有了,这里还是有IO,这一般是后装apk导致,这个可以把readahead做的更健壮一些,不要只学习开始的一两次。

其他NB的优化

另外还有一个很NB的技术,就是STD。这个我们也搞过,花费了大量的人力物力。STD开机时间,不算上uboot时间的话,基本都是在10S内,5~8S之间。不过这么NB的技术,目前基本上也是废弃了,用起来问题也挺多的:

1. 开机时间少了,关机时间拉长。

由于是STD(Suspend to Disk),关机时需要将内存数据写入nand,这块也是挺麻烦的事情

2. 稳定性

本身STD弄起来就比较复杂,BUG挺多的,另外使用STD,就相当于永不关机了,这也太考验系统软件的稳定性了...

3. 没毛用

   一开始还能忽悠客户,不过后来也没人怎么关心这个feature了,平白给自己找活干,大家都不乐意使能它了。

6. idea设置springboot启动jvm参数

idea设置springboot启动jvm参数,设置方式,通过ldea设置,编辑配置文件。参数说明参数说明-Xms初始化堆内存大小,eg.-Xms1G-Xmx堆内存最大值,eg.-Xms1G,通常与-Xms设置相同的值-XX:ReservedCodeCacheSize代码缓存,它是用来存储已编译方法生成的本地代码。代码缓存确实很少引起性能问题,但是一旦发生其影响可能是毁灭性的。如果代码缓存被占满,JVM会打印出一条警告消息,并切换到interpreted-only模式:JIT编译器被停用,字节码将不再会被编译成机器码。因此,应用程序将继续运行,但运行速度会降低一个数量级,直到有人注意到这个问题。就像其他内存区域一样,我们可以自定义代码缓存的大小。它们的参数都eg.-XX:ReservedCodeCacheSize=240m-XX:InitialC查看更多。

热点内容
新乡java培训 发布:2024-11-16 16:28:10 浏览:428
汇编反编译成c 发布:2024-11-16 16:21:12 浏览:108
qt5静态编译体积太大 发布:2024-11-16 16:21:12 浏览:801
膏子药存储 发布:2024-11-16 16:02:34 浏览:682
安卓红包雷神怎么样 发布:2024-11-16 15:53:17 浏览:392
支付密码是对的怎么办 发布:2024-11-16 15:45:20 浏览:176
安卓动态库反编译 发布:2024-11-16 15:23:04 浏览:374
什么是奥维服务器lp地址 发布:2024-11-16 15:20:13 浏览:10
c数字图像处理源码 发布:2024-11-16 15:13:28 浏览:402
为什么苹果处理器一直比安卓好 发布:2024-11-16 15:13:22 浏览:153