编译dts命令
Ⅰ 如何将dtb反编译成dts
由于device tree会将一个node的信息分布在各个文件里,查看起来很不方便,比如如下例子,ldb在三个文件中都有配置:
imx6qdl-sabresd.dtsi:
&ldb {
status = "okay";
.......
};
imx6qdl.dtsi:
ldb: ldb@020e0008 {
#address-cells = <1>;
#size-cells = <0>;
......
};
imx6q.dtsi:
&ldb {
compatible = "fsl,imx6q-ldb", "fsl,imx53-ldb";
.......
}
其实device tree编译之后最终是会被全部放在一个.dtb结尾的文件,
比如这里是imx6q-sabresd-ldo.dtb,用如下命令就可以看到整个ldb node的内容,而且也可以作为编译之后的检查。
[kris@ecovacs:~/kernel_imx/scripts/dtc]$
./dtc -I dtb -O dts ../../arch/arm/boot/dts/imx6q-sabresd-ldo.dtb > ~/f.dts
Ⅱ sql 2014 可以用dts 吗
可以,在sql server中主要有三种方式导入导出数据:使用Transact-SQL对数据进行处理;调用命令行工具BCP处理数据;使用数据转换服务(DTS)对数据进行处理。
DTS是SQL Server中导入导出数据的核心,它除有具有SQL和命令行工具BCP相应的功能外,还可以灵活地通过VBScript、JScript等脚本语言对数据进行检验、净化和转换。
sql Server为DTS提供了图形用户接口,用户可以使用图形界面导入导出数据,并对数据进行相应的处理。同时,DTS还以com组件的形式提供编程接口,也就是说任何支持com组件的开发工具都可以利用com组件使用DTS所提供的功能。DTS在SQL Server中可以保存为不同的形式,可以是包的形式,也可以保存成Visual Basic源程序文件,这样只要在VB中编译便可以使用DTS com组件了。
DTS和其它数据导入导出方式最大的不同就是它可以在处理数据的过程中对每一行数据进行深度处理。以下是一段VBScript代码,这段代码在处DTS理每一条记录时执行,DTSDestination表示目标记录,DTSSource表示源记录,在处理“婚姻状况”时,将源记录中的“婚姻状况”中的0或1转换成目标记录中“已婚”或“未婚”。
使用DTS方式导数据应该是最好的方式了。由于它整合了Microsoft Universal Data Access技术与Microsoft ActiveX技术,因此不仅可以灵活地处理数据,而且在数据导入导出的效率是非常高的。
如果是在SQL Server数据库之间进行数据导入导出时,并且不需要对数据进行复杂的检验,最好使用Transact-SQL方法进行处理,因为在SQL Server数据库之间进行数据操作时,SQL是非常快的。当然,如果要进行复杂的操作,如数据检验、转换等操作时,最好还是使用DTS进行处理,因为 DTS不光导数据效率高,而且能够对数据进行深度控制。但是DTS的编程接口是基于com的,并且这个接口十分复杂,因此,使用程序调用DTS将变也会变得很复杂,因此, 当数据量不是很大,并且想将数据导入导出功能加入到程序中,而且没有复杂的数据处理功能时,可以使用OPENDATASOURCE或OPENROWSET 进行处理。
Ⅲ linux怎么调用dts生成dtb
dtb文件作用的描述是,使用dtb可以减少linux内核版本的数量。同一份linux 内核代码可以在多个板卡上运行,每个板卡可以使用自己的dtb文件。
1,在linux内核启动过程中会解析dtb文件,根据dtb文件中设备列表进行加注各个外设的驱动模块。
2,PC机在启动时会自动扫描外设,而在嵌入式中,linux内核启动过程中只是解析dtb文件,从而加载对应的模块。
3,编译linux内核时必须选择某外设模块,并且dtb中包括该外设的信息。在linux内核启动过程中才能自动加载该模块。
要使用dtb,需要uboot启动内核时,在bootm命令中指定dtb的位置,格式为:
bootm uImage_addr ramdisk_addr dtb_addr
如果没有ramdisk,就需要写成bootm uImage_addr - dtb_addr,用“-”表示没有ramdisk
Ⅳ 如何使用dtc编译设备树 devicetree
DTS (device tree source)
.dts文件是一种ASCII 文本格式的Device
Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM
Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就include这个.dtsi。譬如,对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:
/include/
"vexpress-v2m.dtsi"
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM
SoC的.dtsi都引用了skeleton.dtsi。
.dts(或者其include的.dtsi)基本元素即为前文所述的结点和属性:
[plain] view
plainprint?
/ {
node1 {
a-string-property = "A string";
a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = "Hello, world";
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
/ {
node1 {
a-string-property = "A string";
a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = "Hello, world";
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
上述.dts文件并没有什么真实的用途,但它基本表征了一个Device
Tree源文件的结构:
1个root结点"/";
root结点下面含一系列子结点,本例中为"node1" 和
"node2";
结点"node1"下又含有一系列子结点,本例中为"child-node1" 和
"child-node2";
各结点都有一系列属性。这些属性可能为空,如"
an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-data-property"。
下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1个双核ARM
Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和
0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于0x10140000)和一个external
bus桥;
External bus桥上又连接了SMC SMC91111
Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR
Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim
DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:
[plain] view
plainprint?
/ {
compatible = "acme,coyotes-revenge";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
};
};serial@101f0000 {
compatible = "arm,pl011";
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};serial@101f2000 {
compatible = "arm,pl011";
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};gpio@101f3000 {
compatible = "arm,pl061";
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};intc: interrupt-controller@10140000 {
compatible = "arm,pl190";
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};spi@10115000 {
compatible = "arm,pl022";
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flashethernet@0,0 {
compatible = "smc,smc91c111";
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};i2c@1,0 {
compatible = "acme,a1234-i2c-bus";
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};flash@2,0 {
compatible = "samsung,k8f1315ebm", "cfi-flash";
reg = <2 0 0x4000000>;
};
};
};
/ {
compatible = "acme,coyotes-revenge";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
};
};
serial@101f0000 {
compatible = "arm,pl011";
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = "arm,pl011";
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = "arm,pl061";
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = "arm,pl190";
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = "arm,pl022";
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = "smc,smc91c111";
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = "acme,a1234-i2c-bus";
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = "samsung,k8f1315ebm", "cfi-flash";
reg = <2 0 0x4000000>;
};
};
};
上述.dts文件中,root结点"/"的compatible 属性compatible =
"acme,coyotes-revenge";定义了系统的名称,它的组织形式为:<manufacturer>,<model>。Linux内核透过root结点"/"的compatible
属性即可判断它启动的是什么machine。
在.dts文件的每个设备,都有一个compatible
属性,compatible属性用户驱动和设备的绑定。compatible
属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为"<manufacturer>,<model>",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
[plain] view
plainprint?
flash@0,00000000 {
compatible = "arm,vexpress-flash", "cfi-flash";
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
flash@0,00000000 {
compatible = "arm,vexpress-flash", "cfi-flash";
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。
再比如,Freescale
MPC8349 SoC含一个串口设备,它实现了国家半导体(National Semiconctor)的ns16550
寄存器接口。则MPC8349串口设备的compatible属性为compatible = "fsl,mpc8349-uart",
"ns16550"。其中,fsl,mpc8349-uart指代了确切的设备, ns16550代表该设备与National Semiconctor
的16550
UART保持了寄存器兼容。
接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible
属性为"arm,cortex-a9"。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com
Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。ePAPR标准给出了结点命名的规范。