编译原理如何构造注释语法分析树
㈠ 编译原理笔记17:自下而上语法分析(4)LR(0)、SLR(1) 分析表的构造
(移进项目就是指圆点右边是终结符的项目,规约项目指的就是圆点在右部最右端的项目)
LR(0) 文法可以直接通过识别活前缀的 DFA 来构造 LR 分析表
假定 C = {I 0 , I 1 , ... , I n } (aka. LR(0) 项目规范族、DFA 状态集)
首先为文法产生式进行编号,拓广文法的产生式要标记为 0(这里就是后面分析表中 rj 的产生式编号 j 的由来)
然后令每个项目集 I k 的下标 k 作为分析器的状态(行首),包含 S' → .S 的集合下标为分析器的初态(也就是 DFA 的初态,一般都是 0 )。
下面用一个例子来说明 ACTION、GOTO 子表的构造:
SLR(1) 为解决冲突提出了一个简单的方法:通过识别活前缀的 DFA 和【简单向前看一个终结符】构造 SLR(1) 分析表。
如果我们的识别活前缀的 DFA 中存在移进-规约冲突、规约-规约冲突,都可以尝试使用这个方法来解决冲突。(这里说【尝试】,当然是因为 SLR 也只能解决一部分问题,并不是万能的灵丹妙药。。)
这里,我们拿前面那个 LR(0) 解决不了的文法来举例
该文法不是 LR(0) 文法,但是是 SLR(1) 文法。
观察上图 DFA 中的状态2,想象当我们的自动机正处于这个状态:次栈顶已经规约为 T 了,栈顶也是当前的状态 2 ,而当前剩余输入为 *。
如果这个自动机不会【往前多看一步】的话,那么对处于这个状态的自动机来说,看起来状态 2 中的移进项目和规约项目都是可选的。这就是移进-规约冲突。
想要解决这个冲突,就轮到【往前多看一步】上场了——把当前剩余输入考虑进来,辅助进行项目的选择:
对其他的冲突也使用同样的方法进行判断。
这种冲突性动作的解决办法叫做 SLR(1) 解决办法
准备工作部分,与 LR(0) 分析表的构造差不多:同样使用每个项目集的状态编号作为分析器的状态编号,也就同样用作行下标;同样使用拓广文法产生式作为 0 号产生式。
填表也和 LR(0) 类似,唯一的不同体现在对规约项的处理方法上:如果当前状态有项目 A → α.aβ 和 A → α. ,而次栈顶此时是 α 且读写头读到的是 a,那么当且仅当 a∈FOLLOW(A) 时,我们才会用 A → α 对 α 进行规约。
如果构造出来的表的每个入口都不含多重定义(也就是如上图中表格那样的,每个格子里面最多只有一个动作),那么该表就是该文法的 SLR(1) 表,这个文法就是 SLR(1) 文法。使用 SLR(1) 表的分析器叫做一个 SLR(1) 分析器。
任意的二义文法都不能构造出 SLR(1) 分析表
例:悬空 else
例:
这里的 L 可以理解为左值,R 可以理解为右值
经过计算可以确定其 DFA 如下图所示。
在 状态4 中,由于 "=" 同时存在于 FOLLOW(L) 与 FOLLOW(R) 中,因此该状态内存在移进-规约冲突,故该文法不是 SLR(1) 文法。
这样的非二义文法可以通过增加向前看终结符的个数来解决冲突(比如LL(2)、LR(2))但这会让问题更加复杂,故一般不采用。而二义文法无论向前看多少个终结符都无法解决二义性。
㈡ 分析树和语法树的区别 编译原理
如果给出短语等名词的形式化的定义,便较难理解,不好求。我们通过构造语法树来求解。首先你应该会根据文法将所给句型构造成语法树的形式,即根据文法怎样推导出句型E+T*F。如果你有数据结构二叉树基础的话这很简单就构造出来了。构造出语法树后,求短语看根节点,有T,和E。则短语为:E+T*F,T*F,而直接短语是指能直接推出叶子节点的根所对应的短语,可知该节点为T,直接短语为:T*F。句柄是最左直接短语,可知为:T*F。
㈢ 编译原理实验二 LL(1)分析法
通过完成预测分析法的语法分析程序,了解预测分析法和递归子程序法的区别和联系。使学生了解语法分析的功能,掌握语法分析程序设计的原理和构造方法,训练学生掌握开发应用程序的基本方法。有利于提高学生的专业素质,为培养适应社会多方面需要的能力。
根据某一文法编制调试 LL(1)分析程序,以便对任意输入的符号串进行分析。
构造预测分析表,并利用分析表和一个栈来实现对上述程序设计语言的分析程序。
分析法的功能是利用LL(1)控制程序根据显示栈栈顶内容、向前看符号以及LL(1)分析表,对输入符号串自上而下的分析过程。
对文法 的句子进行不含回溯的自上向下语法分析的充分必要条件是:
(1)文法不含左递归;
(2)对于文法中的每一个非终结符 的各个产生式的候选首符集两两不相交,即,若
Follow集合构造:
对于文法 的每个非终结符 构造 的算法是,连续使用下面的规则,直至每个 不再增大为止:
仅给出核心部分
(1) GrammerSymbol.java
(2) GrammerSymbols.java
(3) Grammer.java
(4) LL1Grammer.java
㈣ 编译原理笔记9:语法分析树、语法树、二义性的消除
语法分析树和语法树不是一种东西 。习惯上,我们把前者叫做“具体语法树”,其能够体现推导的过程;后者叫做“抽象语法树”,其不体现过程,只关心最后的结果。
语法分析树是语言推导过程的图形化表示方法。这种表示方法反映了语言的实质以及语言的推导过程。
定义:对于 CFG G 的句型,分析树被定义为具有下述性质的一棵树:
推导,有最左推导和最右推导,这两种推导方式在推导过程中的分析树可能不同,但因最终得到的句子是相同的,所以最终的分析树是一样的。
分析树能反映句型的推导过程,也能反映句型的结构。然而实际上,我们往往不关心推导的过程,而只关心推导的结果。因此,我们要对 分析树 进行改造,得到 语法树 。语法树中全是终结符,没有非终结符。而且语法树中没有括号
定义:
说白了,语法树这玩意,就一句话: 叶子全是操作数,内部全是操作符 ,树里没有非终结符也不能有括号。
语法树要表达的东西,是操作符(运算)作用于操作数(运算对象)
举俩例子吧:
【例】: -(id+id) 的语法树:
【例】:-id+id 的语法树:
显然,我们从上面这两个语法树中,直接就能观察出来它们的运算顺序。
【例】:句型 if C then s1 else s2
二义性问题:一个句子可能对应多于一棵语法树。
【例】: 设文法 G: E → E+E | E*E | (E) | -E | id
则,句子 id+id*id、id+id+id 可能的分析树有:
在该例中,虽然 id+id+id 的 “+” 的结合性无论左右都不会影响结果。但万一,万一“+”的含义变成了“减法”,那么左结合和右结合就会引起很大的问题了。
我们在这里讲的“二义性”的“义”并非语义——我们现在在学习的内容是“语法分析器”,尚未到需要研究语言背后含义的阶段。
我们现在讲的“二义性”指的是一个句子对应多种分析树。
二义性的体现,是文法对同一句子有不止一棵分析树。这种问题由【句子产生过程中的某些推导有多于一种选择】引起。悬空 else 问题就可以很好地体现这种【超过一种选择】带来的二义性问题,示例如下。
看下面这么个例子。。
(其实,我感觉这个其实比较像是“说话大喘气”带来的理解歧义问题。。。)上面的产生式中并没体现出来该咋算分一块,所以两种完全不同的句子结构都是合法的。
二义性问题是有救的,大概有以下这三种办法:
这些办法的核心,其实都是将优先级和结合性说明白。
核心:把优先级和结合性说明白
既然要说明白,那就不能让一个非终结符可以直接在当次推导中能推出会带来优先级和结合性歧义的东西。(对分析树的一个内部节点,不会有出现在其下面的分支是相同的非终结符的情况。如果有得选,那就有得歧义了。没得选才能确定地一路走到黑)
改写为非二义文法的二义文法大概有下面这几个特点:
改写的关键步骤:
【例】改写下面的二义文法为非二义文法。图右侧是要达成的优先级和结合性
改写的核心其实就两句话:
所以能够得到非终结符与运算的对应关系(因为不同的运算有不同的优先级,我们想要引入多个优先级就要引入多个新的非终结符。这样每个非终结符就可以负责一个优先级的运算符号,也就是说新的非终结符是与运算有关系的了。因此这里搞出来了“对应关系”四个字)如下:
优先级由低到高分别是 +、 、-,而距离开始符号越近,优先级越低。因此在这里的排序也可以+ -顺序。每个符号对应一层的非终结符。根据所需要的结合性,则可确定是左递归还是右递归,以确定新的产生式长什么样子
【例】:规定优先级和结合性,写出改写的非二义文法
我们已经掌握了一种叫做【改写】的工具,能让我们消除二义性。接下来我们就要用这个工具来尝试搞搞悬空 else 问题!
悬空 else 问题出现的原因是 then 数量多于 else,让 else 有多个可以结合的 then。在二义文法中,由于选哪两个 then、else 配对都可以,故会引起出现二义的情况。在这里,我们规定 else 右结合,即与左边最靠近的 then 结合。
为改写此文法,可以将 S 分为完全匹配(MS)和不完全匹配(UMS)两类。在 MS 中体现 then、else 个数相等即匹配且右结合;在UMS 中 then、else 不匹配,体现 else 右结合。
【例】:用改写后的文法写一个条件语句
经过检查,无法再根据文法写出其他分析树,故已经消除了二义性
虽然二义文法会导致二义性,但是其并非一无是处。其有两个显着的优点:
在 Yacc 中,我们可以直接指定优先级、结合性而无需自己重写文法。
left 表示左结合,right 表示右结合。越往下的算符优先级越高。
嗯就这么简单。。。
我们其实可以把语言本身定义成没有优先级和结合性的。。然后所有的优先、结合都交由括号进行控制,哪个先算就加括号。把一个过程的结束用明确的标志标记出来。
比如在 Ada 中:
在 Pascal 中,给表达式加括号:
㈤ 编译原理
C语言编译过程详解
C语言的编译链接过程是要把我们编写的一个C程序(源代码)转换成可以在硬件上运行的程序(可执行代码),需要进行编译和链接。编译就是把文本形式源代码翻译为机器语言形式的目标文件的过程。链接是把目标文件、操作系统的启动代码和用到的库文件进行组织形成最终生成可执行代码的过程。过程图解如下:
从图上可以看到,整个代码的编译过程分为编译和链接两个过程,编译对应图中的大括号括起的部分,其余则为链接过程。
一、编译过程
编译过程又可以分成两个阶段:编译和汇编。
1、编译
编译是读取源程序(字符流),对之进行词法和语法的分析,将高级语言指令转换为功能等效的汇编代码,源文件的编译过程包含两个主要阶段:
第一个阶段是预处理阶段,在正式的编译阶段之前进行。预处理阶段将根据已放置在文件中的预处理指令来修改源文件的内容。如#include指令就是一个预处理指令,它把头文件的内容添加到.cpp文件中。这个在编译之前修改源文件的方式提供了很大的灵活性,以适应不同的计算机和操作系统环境的限制。一个环境需要的代码跟另一个环境所需的代码可能有所不同,因为可用的硬件或操作系统是不同的。在许多情况下,可以把用于不同环境的代码放在同一个文件中,再在预处理阶段修改代码,使之适应当前的环境。
主要是以下几方面的处理:
(1)宏定义指令,如 #define a b。
对于这种伪指令,预编译所要做的是将程序中的所有a用b替换,但作为字符串常量的 a则不被替换。还有 #undef,则将取消对某个宏的定义,使以后该串的出现不再被替换。
(2)条件编译指令,如#ifdef,#ifndef,#else,#elif,#endif等。
这些伪指令的引入使得程序员可以通过定义不同的宏来决定编译程序对哪些代码进行处理。预编译程序将根据有关的文件,将那些不必要的代码过滤掉
(3) 头文件包含指令,如#include "FileName"或者#include <FileName>等。
在头文件中一般用伪指令#define定义了大量的宏(最常见的是字符常量),同时包含有各种外部符号的声明。采用头文件的目的主要是为了使某些定义可以供多个不同的C源程序使用。因为在需要用到这些定义的C源程序中,只需加上一条#include语句即可,而不必再在此文件中将这些定义重复一遍。预编译程序将把头文件中的定义统统都加入到它所产生的输出文件中,以供编译程序对之进行处理。包含到C源程序中的头文件可以是系统提供的,这些头文件一般被放在/usr/include目录下。在程序中#include它们要使用尖括号(<>)。另外开发人员也可以定义自己的头文件,这些文件一般与C源程序放在同一目录下,此时在#include中要用双引号("")。
(4)特殊符号,预编译程序可以识别一些特殊的符号。
例如在源程序中出现的LINE标识将被解释为当前行号(十进制数),FILE则被解释为当前被编译的C源程序的名称。预编译程序对于在源程序中出现的这些串将用合适的值进行替换。
预编译程序所完成的基本上是对源程序的“替代”工作。经过此种替代,生成一个没有宏定义、没有条件编译指令、没有特殊符号的输出文件。这个文件的含义同没有经过预处理的源文件是相同的,但内容有所不同。下一步,此输出文件将作为编译程序的输出而被翻译成为机器指令。
第二个阶段编译、优化阶段。经过预编译得到的输出文件中,只有常量;如数字、字符串、变量的定义,以及C语言的关键字,如main,if,else,for,while,{,}, +,-,*,\等等。
编译程序所要作得工作就是通过词法分析和语法分析,在确认所有的指令都符合语法规则之后,将其翻译成等价的中间代码表示或汇编代码。
优化处理是编译系统中一项比较艰深的技术。它涉及到的问题不仅同编译技术本身有关,而且同机器的硬件环境也有很大的关系。优化一部分是对中间代码的优化。这种优化不依赖于具体的计算机。另一种优化则主要针对目标代码的生成而进行的。
对于前一种优化,主要的工作是删除公共表达式、循环优化(代码外提、强度削弱、变换循环控制条件、已知量的合并等)、复写传播,以及无用赋值的删除,等等。
后一种类型的优化同机器的硬件结构密切相关,最主要的是考虑是如何充分利用机器的各个硬件寄存器存放的有关变量的值,以减少对于内存的访问次数。另外,如何根据机器硬件执行指令的特点(如流水线、RISC、CISC、VLIW等)而对指令进行一些调整使目标代码比较短,执行的效率比较高,也是一个重要的研究课题。
2、汇编
汇编实际上指把汇编语言代码翻译成目标机器指令的过程。对于被翻译系统处理的每一个C语言源程序,都将最终经过这一处理而得到相应的目标文件。目标文件中所存放的也就是与源程序等效的目标的机器语言代码。目标文件由段组成。通常一个目标文件中至少有两个段:
代码段:该段中所包含的主要是程序的指令。该段一般是可读和可执行的,但一般却不可写。
数据段:主要存放程序中要用到的各种全局变量或静态的数据。一般数据段都是可读,可写,可执行的。
UNIX环境下主要有三种类型的目标文件:
(1)可重定位文件
其中包含有适合于其它目标文件链接来创建一个可执行的或者共享的目标文件的代码和数据。
(2)共享的目标文件
这种文件存放了适合于在两种上下文里链接的代码和数据。
第一种是链接程序可把它与其它可重定位文件及共享的目标文件一起处理来创建另一个 目标文件;
第二种是动态链接程序将它与另一个可执行文件及其它的共享目标文件结合到一起,创建一个进程映象。
(3)可执行文件
它包含了一个可以被操作系统创建一个进程来执行之的文件。汇编程序生成的实际上是第一种类型的目标文件。对于后两种还需要其他的一些处理方能得到,这个就是链接程序的工作了。
二、链接过程
由汇编程序生成的目标文件并不能立即就被执行,其中可能还有许多没有解决的问题。
例如,某个源文件中的函数可能引用了另一个源文件中定义的某个符号(如变量或者函数调用等);在程序中可能调用了某个库文件中的函数,等等。所有的这些问题,都需要经链接程序的处理方能得以解决。
链接程序的主要工作就是将有关的目标文件彼此相连接,也即将在一个文件中引用的符号同该符号在另外一个文件中的定义连接起来,使得所有的这些目标文件成为一个能够被操作系统装入执行的统一整体。
根据开发人员指定的同库函数的链接方式的不同,链接处理可分为两种:
(1)静态链接
在这种链接方式下,函数的代码将从其所在地静态链接库中被拷贝到最终的可执行程序中。这样该程序在被执行时这些代码将被装入到该进程的虚拟地址空间中。静态链接库实际上是一个目标文件的集合,其中的每个文件含有库中的一个或者一组相关函数的代码。
(2) 动态链接
在此种方式下,函数的代码被放到称作是动态链接库或共享对象的某个目标文件中。链接程序此时所作的只是在最终的可执行程序中记录下共享对象的名字以及其它少量的登记信息。在此可执行文件被执行时,动态链接库的全部内容将被映射到运行时相应进程的虚地址空间。动态链接程序将根据可执行程序中记录的信息找到相应的函数代码。
对于可执行文件中的函数调用,可分别采用动态链接或静态链接的方法。使用动态链接能够使最终的可执行文件比较短小,并且当共享对象被多个进程使用时能节约一些内存,因为在内存中只需要保存一份此共享对象的代码。但并不是使用动态链接就一定比使用静态链接要优越。在某些情况下动态链接可能带来一些性能上损害。
我们在linux使用的gcc编译器便是把以上的几个过程进行捆绑,使用户只使用一次命令就把编译工作完成,这的确方便了编译工作,但对于初学者了解编译过程就很不利了,下图便是gcc代理的编译过程:
从上图可以看到:
预编译
将.c 文件转化成 .i文件
使用的gcc命令是:gcc –E
对应于预处理命令cpp
编译
将.c/.h文件转换成.s文件
使用的gcc命令是:gcc –S
对应于编译命令 cc –S
汇编
将.s 文件转化成 .o文件
使用的gcc 命令是:gcc –c
对应于汇编命令是 as
链接
将.o文件转化成可执行程序
使用的gcc 命令是: gcc
对应于链接命令是 ld
总结起来编译过程就上面的四个过程:预编译、编译、汇编、链接。了解这四个过程中所做的工作,对我们理解头文件、库等的工作过程是有帮助的,而且清楚的了解编译链接过程还对我们在编程时定位错误,以及编程时尽量调动编译器的检测错误会有很大的帮助的。
是否可以解决您的问题?
㈥ 一个编译原理问题
首先写出指定句型的规范推导:
S→(L)→(L,S)→(L,(L))→(L,(S))→(L,(a))→(S,(a))
然后画出分析树如下图
根据分析树的叶子结点可以找出该句型的所有短语:
aS(a)S,(a)(S,(a))
直接短语,就是经过一次非终结符替换得到的短语:
aS没了
句柄就是最左直接短语,要进行规约的部分,根据分析树我们找到最左直接短语为:
S
㈦ 编译原理-句型、句子、短语、直接短语、句柄、素短语、最左素短语
在进行语法分析的时候,有时候会对这些词语的概念不清晰,这里我们就详细归纳总结一下。
可以看出这个里面,最需要理解的概念就是短语,其他大部分概念都是在短语基础上延伸的,从概念上可以看出:
假设有一个文法
针对文法的一个特定句型 (Sd(T)db) , 其推导过程如下:
这个句型 (Sd(T)db) 对应的 CFG 分析树如下:
那个这个句型 (Sd(T)db) 有多少个短语呢?
还记得短语的定义么, S ⇒* αβδ , αβδ 代表句型就是这里的 (Sd(T)db) 。
因此这个句型 (Sd(T)db) :
算法非常简单,就是通过分析树的后序遍历,先将子树的叶节点从左到右排合并成字符串(即一个短语),然后用它代表子树的根节点的值,再和与子树根节点同一层节点值合并,得到新的短语。就这样从分析树的最底层,一路合并到分析树的根节点,就能得到所有的短语了。
通过递归的方法,获取短语列表 phraseList , 直接短语列表 directPhraseList 和 素短语列表 plainPhraseList 。
运行结果:
㈧ 【编译原理】第二章:语言和文法
上述文法 表示,该文法由终结符集合 ,非终结符集合 ,产生式集合 ,以及开始符号 构成。
而产生式 表示,一个表达式(Expression) ,可以由一个标识符(Identifier) 、或者两个表达式由加号 或乘号 连接、或者另一个表达式用括号包裹( )构成。
约定 :在不引起歧义的情况下,可以只写产生式。如以上文法可以简写为:
产生式
可以简写为:
如上例中,
可以简写为:
给定文法 ,如果有 ,那么可以将符号串 重写 为 ,记作 ,这个过程称为 推导 。
如上例中, 可以推导出 或 或 等等。
如果 ,
可以记作 ,则称为 经过n步推导出 ,记作 。
推导的反过程称为 归约 。
如果 ,则称 是 的一个 句型(sentential form )。
由文法 的开始符号 推导出的所有句子构成的集合称为 文法G生成的语言 ,记作 。
即:
例
文法
表示什么呢?
代表小写字母;
代表数字;
表示若干个字母和数字构成的字符串;
说明 是一个字母、或者是字母开头的字符串。
那么这个文法表示的即是,以字母开头的、非空的字符串,即标识符的构成方式。
并、连接、幂、克林闭包、正闭包。
如上例表示为:
中必须包含一个 非终结符 。
产生式一般形式:
即上式中只有当上下文满足 与 时,才能进行从 到 的推导。
上下文有关文法不包含空产生式( )。
产生式的一般形式:
即产生式左边都是非终结符。
右线性文法 :
左线性文法 :
以上都成为正则文法。
即产生式的右侧只能有一个终结符,且所有终结符只能在同一侧。
例:(右线性文法)
以上文法满足右线性文法。
以上文法生成一个以字母开头的字母数字串(标识符)。
以上文法等价于 上下文无关文法 :
正则文法能描述程序设计语言中的多数单词。
正则文法能描述程序设计语言中的多数单词,但不能表示句子构造,所以用到最多的是CFG。
根节点 表示文法开始符号S;
内部节点 表示对产生式 的应用;该节点的标号是产生式左部,子节点从左到右表示了产生式的右部;
叶节点 (又称边缘)既可以是非终结符也可以是终结符。
给定一个句型,其分析树的每一棵子树的边缘称为该句型的一个 短语 。
如果子树高度为2,那么这棵子树的边缘称为该句型的一个 直接短语 。
直接短语一定是某产生式的右部,但反之不一定。
如果一个文法可以为某个句子生成 多棵分析树 ,则称这个文法是 二义性的 。
二义性原因:多个if只有一个else;
消岐规则:每个else只与最近的if匹配。
㈨ 简述利用推导构造语法树的过程
语法树,是针对上下文无关文法,用来表示一个句型的生成过程的一种描述手段。
对于给定的句型,依据文法构造它的语法树,是语法分析的任务。
编译原理课程中重点学习的各种语法分析方法,都是解决语法树的构造的具体分析方法。
在学习并掌握各种语法分析方法之前,一般只能依据直觉印象,通过猜测、拼凑等手段,去试着推演,凑出符合要求的句型的语法树。所以这个阶段练习用的题目一般也不很复杂,通过多多练习也能找到一些技巧(其实主要是后面将要学习的自顶向下语法分析中的一些原则)。
对于给定的文法,有一些句型可能能构建出两棵甚至多棵结构不同的语法树,结果不一定是唯一的。这样的文法就是所谓的二义性文法。
对于非二义性文法而言,任意一个句型的语法树都是唯一的。
㈩ 编译原理-LL1文法详细讲解
我们知道2型文法( CFG ),它的每个产生式类型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。
例如, 一个表达式的文法:
最终推导出 id + (id + id) 的句子,那么它的推导过程就会构成一颗树,即 CFG 分析树:
从分析树可以看出,我们从文法开始符号起,不断地利用产生式的右部替换产生式左部的非终结符,最终推导出我们想要的句子。这种方式我们称为自顶向下分析法。
从文法开始符号起,不断用非终结符的候选式(即产生式)替换当前句型中的非终结符,最终得到相应的句子。
在每一步推导过程中,我们需要做两个选择:
因为一个句型中,可能存在多个非终结符,我们就不确定选择那一个非终结符进行替换。
对于这种情况,我们就需要做强制规定,每次都选择句型中第一个非终结符进行替换(或者每次都选择句型中最后一个非终结符进行替换)。
自顶向下的语法分析采用最左推导方式,即总是选择每个句型的最左非终结符进行替换。
最终的结果是要推导出一个特定句子(例如 id + (id + id) )。
我们将特定句子看成一个输入字符串,而每一个非终结符对应一个处理方法,这个处理方法用来匹配输入字符串的部分,算法如下:
方法解析:
这种方式称为递归下降分析( Recursive-Descent Parsing ):
当选择的候选式不正确,就需要回溯( backtracking ),重新选择候选式,进行下一次尝试匹配。因为要不断的回溯,导致分析效率比较低。
这种方式叫做预测分析( Predictive Parsing ):
要实现预测分析,我们必须保证从文法开始符号起,每一个推导过程中,当前句型最左非终结符 A 对于当前输入字符 a ,只能得到唯一的 A 候选式。
根据上面的解决方法,我们首先想到,如果非终结符 A 的候选式只有一个以终结符 a 开头候选式不就行了么。
进而我们可以得出,如果一个非终结符 A ,它的候选式都是以终结符开头,并且这些终结符都各不相同,那么本身就符合预测分析了。
这就是S_文法,满足下面两个条件:
例子:
这就是一个典型的S_文法,它的每一个非终结符遇到任一终结符得到候选式是确定的。如 S -> aA | bAB , 只有遇到终结符 a 和 b 的时候,才能返回 S 的候选式,遇到其他终结符时,直接报错,匹配不成功。
虽然S_文法可以实现预测分析,但是从它的定义上看,S_文法不支持空产生式(ε产生式),极大地限制了它的应用。
什么是空产生式(ε产生式)?
例子
这里 A 有了空产生式,那么 S 的产生式组 S -> aA | bAB ,就可以是 a | bB ,这样 a , bb , bc 就变成这个文法 G 的新句子了。
根据预测分析的定义,非终结符对于任一终结符得到的产生式是确定的,要么能获取唯一的产生式,要么不匹配直接报错。
那么空产生式何时被选择呢?
由此可以引入非终结符 A 的后继符号集的概念:
定义: 由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符 a 的集合,就是这个非终结符 A 的后继符号集,记为 FOLLOW(A) 。
因此对于 A -> ε 空产生式,只要遇到非终结符 A 的后继符号集中的字符,可以选择这个空产生式。
那么对于 A -> a 这样的产生式,只要遇到终结符 a 就可以选择了。
由此我们引入的产生式可选集概念:
定义: 在进行推导时,选用非终结符 A 一个产生式 A→β 对应的输入符号的集合,记为 SELECT(A→β)
因为预测分析要求非终结符 A 对于输入字符 a ,只能得到唯一的 A 候选式。
那么对于一个文法 G 的所有产生式组,要求有相同左部的产生式,它们的可选集不相交。
在 S_文法基础上,我们允许有空产生式,但是要做限制:
将上面例子中的文法改造:
但是q_文法的产生式不能是非终结符打头,这就限制了其应用,因此引入LL(1)文法。
LL(1)文法允许产生式的右部首字符是非终结符,那么怎么得到这个产生式可选集。
我们知道对于产生式:
定义: 给定一个文法符号串 α , α 的 串首终结符集 FIRST(α) 被定义为可以从 α 推导出的所有串首终结符构成的集合。
定义已经了解清楚了,那么该如何求呢?
例如一个文法符号串 BCDe , 其中 B C D 都是非终结符, e 是终结符。
因此对于一个文法符号串 X1X2 … Xn ,求解 串首终结符集 FIRST(X1X2 … Xn) 算法:
但是这里有一个关键点,如何求非终结符的串首终结符集?
因此对于一个非终结符 A , 求解 串首终结符集 FIRST(A) 算法:
这里大家可能有个疑惑,怎么能将 FIRST(Bβ) 添加到 FIRST(A) 中,如果问文法符号串 Bβ 中包含非终结符 A ,就产生了循环调用的情况,该怎么办?
对于 串首终结符集 ,我想大家疑惑的点就是,串首终结符集到底是针对 文法符号串 的,还是针对 非终结符 的,这个容易弄混。
其实我们应该知道, 非终结符 本身就属于一个特殊的 文法符号串 。
而求解 文法符号串 的串首终结符集,其实就是要知道文法符号串中每个字符的串首终结符集:
上面章节我们知道了,对于非终结符 A 的 后继符号集 :
就是由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符的集合,记为 FOLLOW(A) 。
仔细想一下,什么样的终结符可以出现在非终结符 A 后面,应该是在产生式中就位于 A 后面的终结符。例如 S -> Aa ,那么终结符 a 肯定属于 FOLLOW(A) 。
因此求非终结符 A 的 后继符号集 算法:
如果非终结符 A 是产生式结尾,那么说明这个产生式左部非终结符后面能出现的终结符,也都可以出现在非终结符 A 后面。
我们可以求出 LL(1) 文法中每个产生式可选集:
根据产生式可选集,我们可以构建一个预测分析表,表中的每一行都是一个非终结符,表中的每一列都是一个终结符,包括结束符号 $ ,而表中的值就是产生式。
这样进行语法推导的时候,非终结符遇到当前输入字符,就可以从预测分析表中获取对应的产生式了。
有了预测分析表,我们就可以进行预测分析了,具体流程:
可以这么理解:
我们知道要实现预测分析,要求相同左部的产生式,它们的可选集是不相交。
但是有的文法结构不符合这个要求,要进行改造。
如果相同左部的多个产生式有共同前缀,那么它们的可选集必然相交。
例如:
那么如何进行改造呢?
其实很简单,进行如下转换:
如此文法的相同左部的产生式,它们的可选集是不相交,符合现预测分析。
这种改造方法称为 提取公因子算法 。
当我们自顶向下的语法分析时,就需要采用最左推导方式。
而这个时候,如果产生式左部和产生式右部首字符一样(即A→Aα),那么推导就可能陷入无限循环。
例如:
因此对于:
文法中不能包含这两种形式,不然最左推导就没办法进行。
例如:
它能够推导出如下:
你会惊奇的发现,它能推导出 b 和 (a)* (即由 0 个 a 或者无数个 a 生成的文法符号串)。其实就可以改造成:
因此消除 直接左递归 算法的一般形式:
例如:
消除间接左递归的方法就是直接带入消除,即
消除间接左递归算法:
这个算法看起来描述很多,其实理解起来很简单:
思考 : 我们通过 Ai -> Ajβ 来判断是不是间接左递归,那如果有产生式 Ai -> BAjβ 且 B -> ε ,那么它是不是间接左递归呢?
间接地我们可以推出如果一个产生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那么这个产生式是不是间接左递归。