编译链分析
⑴ 用c语言编的程序,要生成可执行文件的时候,要编译、链接,编译是什么意思啊链接是什么意思编译和链接
编译就是把C代码转换成CPU可执行的机器指令,每个.c文件生成一个.obj文件。
链接就是把生成的(多个) .obj 文件及用到的库文件(.lib)一起组合生成可执行文件(.exe)。
⑵ linux嵌入式交叉编译工具链问题 浅谈
简介
交叉编译工具链是一个由编译器、连接器和解释器组成的综合开发环境,交叉编译工具链主要由binutils、gcc和glibc 3个部分组成。有时出于减小libc库大小的考虑,也可以用别的c库来代替glibc,例如uClibc、dietlibc和newlib。交叉编译工具链主要包括针对目标系统的编译器gcc、目标系统的二进制工具binutils、目标系统的标准c库glibc和目标系统的Linux内核头文件。第一个步骤就是确定目标平台。每个目标平台都有一个明确的格式,这些信息用于在构建过程中识别要使用的不同工具的正确版本。因此,当在一个特定目标机下运行GCC时,GCC便在目录路径中查找包含该目标规范的应用程序路径。GNU的目标规范格式为CPU-PLATFORM-OS。例如,建立基于ARM平台的交叉工具链,目标平台名为arm-linux-gnu。
交叉编译工具链的制作方法
分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。
通过Crosstool脚本工具来实现一次编译生成交叉编译工具链。
直接通过网上(ftp.arm.kernel.org.uk)下载已经制作好的交叉编译工具链。
方法1相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用方法2或方法3构建交叉工具链。方法3的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名的错误,建议你慎用此方法。
方法1:分步构建交叉编译工具链
下载所需的源代码包
建立工作目录
建立环境变量
编译、安装Binutils
获取内核头文件
编译gcc的辅助编译器
编译生成glibc库
编译生成完整的gcc
由于在问答中的篇幅,我不能细述具体的步骤,兴趣的同学请自行阅读开源共创协议的《Linux from scratch》,网址是:linuxfromscratch dot org
。
方法2:用Crosstool工具构建交叉工具链(推荐)
Crosstool是一组脚本工具集,可构建和测试不同版本的gcc和glibc,用于那些支持glibc的体系结构。它也是一个开源项目,下载地址是kegel dot com/crosstool。用Crosstool构建交叉工具链要比上述的分步编译容易得多,并且也方便许多,对于仅仅为了工作需要构建交叉编译工具链的你,建议使用此方法。
运行which makeinfo,如果不能找见该命令,在解压texinfo-4.11.tar.bz2,进入texinfo-4.11目录,执行./configure&&make&&make install完成makeinfo工具的安装
准备文件:
下载所需资源文件linux-2.4.20.tar.gz、binutils-2.19.tar.bz2、gcc-3.3.6.tar.gz、glibc- 2.3.2.tar.gz、glibc-linuxthreads-2.3.2.tar.gz和gdb-6.5.tar.bz2。然后将这些工具包文件放在新建的$HOME/downloads目录下,最后在$HOME/目录下解压crosstool-0.43.tar.gz,命
令如下:
#cd$HOME/
#tar–xvzfcrosstool-0.43.tar.gz
建立脚本文件
接着需要建立自己的编译脚本,起名为arm.sh,为了简化编写arm.sh,寻找一个最接近的脚本文件demo-arm.sh作为模板,然后将该脚本的内容复制到arm.sh,修改arm.sh脚本,具体操作如下:
# cd crosstool-0.43
# cp demo-arm.sh arm.sh
# vi arm.sh
修改后的arm.sh脚本内容如下:
#!/bin/sh
set-ex
TARBALLS_DIR=$HOME/downloads#定义工具链源码所存放位置。
RESULT_TOP=$HOME/arm-bin#定义工具链的安装目录
exportTARBALLS_DIRRESULT_TOP
GCC_LANGUAGES="c,c++"#定义支持C,C++语言
exportGCC_LANGUAGES
#创建/opt/crosstool目录
mkdir-p$RESULT_TOP
#编译工具链,该过程需要数小时完成。
eval'catarm.datgcc-3.3.6-glibc-2.3.2.dat'shall.sh--notest
echoDone.
建立配置文件
在arm.sh脚本文件中需要注意arm-xscale.dat和gcc-3.3.6-glibc-2.3.2.dat两个文件,这两个文件是作为Crosstool的编译的配置文件。其中arm.dat文件内容如下,主要用于定义配置文件、定义生成编译工具链的名称以及定义编译选项等。
KERNELCONFIG='pwd'/arm.config#内核的配置
TARGET=arm-linux#编译生成的工具链名称
TARGET_CFLAGS="-O"#编译选项
gcc-3.3.6-glibc-2.3.2.dat文件内容如下,该文件主要定义编译过程中所需要的库以及它定义的版本,如果在编译过程中发现有些库不存在时,Crosstool会自动在相关网站上下载,该工具在这点上相对比较智能,也非常有用。
BINUTILS_DIR=binutils-2.19
GCC_DIR=gcc-3.3.6
GLIBC_DIR=glibc-2.3.2
LINUX_DIR=linux-2.6.10-8(根据实际情况填写)
GDB_DIR=gdb-6.5
执行脚本
将Crosstool的脚本文件和配置文件准备好之后,开始执行arm.sh脚本来编译交叉编译工具。具体执行命令如下:
#cdcrosstool-0.43
#./arm.sh
经过数小时的漫长编译之后,会在/opt/crosstool目录下生成新的交叉编译工具,其中包括以下内容:
arm-linux-addr2linearm-linux-g++arm-linux-ldarm-linux-size
arm-linux-ararm-linux-gccarm-linux-nmarm-linux-strings
arm-linux-asarm-linux-gcc-3.3.6arm-linux-objarm-linux-strip
arm-linux-c++arm-linux-gccbugarm-linux-objmpfix-embedded-paths
arm-linux-c++filtarm-linux-gcovarm-linux-ranlib
arm-linux-cpparm-linux-gprofarm-linux-readelf
添加环境变量
然后将生成的编译工具链路径添加到环境变量PATH上去,添加的方法是在系统/etc/ bashrc文件的最后添加下面一行,在bashrc文件中添加环境变量
export PATH=/home/jiabing/gcc-3.3.6-glibc-2.3.2/arm-linux-bin/bin:$PATH
至此,arm-linux下的交叉编译工具链已经完成,现在就可以使用arm-linux-gcc来生成试验箱上的程序了!
⑶ C语言编辑编译连接的作用是什么
1
编辑:
就是写代码或修改代码,制作C语言的源文件和头文件。
2
编译:是由编译程序将C语言源文件转换成二进制中间文件,在这一步中,会对文件内部的语法语义做处理,如果编译出错,无法进行后续动作。
3
链接:将2中生成的中间文件组合成二进制可执行文件,这一步会对文件之间的关联做检查,如果出错,将不会生成可执行文件,也就无法执行。
4
执行:
运行可执行文件,这一步是编写代码的最终目的。
以上四步每步均依赖于上一步,这是一个逐步由高级语言(C语言)到机器语言(可执行文件)转化的过程。广义的编译,包含编译链接两个部分。
⑷ 编译器的代码分析
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等。
程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变形有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threadedcode)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
⑸ C语言编辑编译连接的作用是什么
C语言编辑的作用是检查语法,制作C语言的源文件和头文件,生成汇编代码。
C语言编辑的作用是将汇编代码转换机器码。在这一步中,会对文件内部的语法语义做处理,如果编译出错,无法进行后续动作。
C语言链接的作用是将机器码链接到一起生成可执行程序。这一步会对文件之间的关联做检查,如果出错,将不会生成可执行程序,也就无法执行。
(5)编译链分析扩展阅读:
C语言链接时,将源文件中用到的库函数与汇编生成的目标文件.o合并生成可执行文件。该可执行文件会变大很多,一般是调用自己电脑上的静态库。
静态库和应用程序编译在一起,在任何情况下都能运行,而动态库是动态链接,文件生效时才会调用。很多代码编译通过,链接失败就极有可能在静态库和动态库这出现了纰漏,要视情况解决。缺少相关所需文件,就会链接报错。这个时候就要检查下本地的链接库是不是缺损。
⑹ c语言里面的编译和链接是怎么回事啊
编译是把你输入的源代码生成目标代码(即:以.obj为后缀名的文件),连接是把.obj文件和系统库相连接(如:#include 中所声明的文件)。如果直接按run,如果源代码正确则是系统自动编译连接,要是源代码有错误则无法运行,并显示错误信息。