当前位置:首页 » 编程软件 » makefile编译运行

makefile编译运行

发布时间: 2023-09-03 16:33:26

㈠ makefile怎么用

操作步骤如下:

1、打开DOS窗口,输入nmake,可能会出现如下错误提示,如下图所示。

5、以开始我们的编译了,打开DOS窗口,导航到源代码目录,执行nmake,注意nmake对应的编译为makefile。

㈡ 如何使用Makefile自动编译iPhone程序

makefile里面所写的内容其实就是你要编译的命令,那么,什么是编译命令呢?
假写你已经写好一个程序代码,并将之存在一个.c文件中,如:hello.c,在终端上你可以这样做!在终端上输入gcc -o hello hello.c
然后回车,看一看有没有什么反映,如果没有打出很多英文的话,恭喜你!你完美地完成了第一步!然后,在终端中输入./hello 看看是不是有什么输出了?
现在来解释一下编译命令:上面的命令的意思就是,使用gcc编译器编译hello.c源代码,生成的文件名称叫做hello.最后,要看程序运行结果,就要运行生成的程序也就是“./hello”了,“./”的意思就是在当前的目录下运行。
而makefile中内容的就是上面的编译命令,如:在makefile文件中写入
Hello:hello.c
gcc -o Hello hello.c
保存文件之后直接在终端中输入make,就完成编译了!makefile存在的意义只是让编译更加方便,也就说,可以把所以的编译都写在一个makefile文件中,然后在终端中输入make就可以完成makefile文件里的命令!
建议还是先将c语言入门,然后再学使用makefile编译程序吧!因为刚开始的时候不用编译很多文件,如果一个文件要编写一个makefile文件的话,那岂不是很繁?

㈢ 如何使用自己的makefile编译android ndk项目

android ndk提供了一套自己的makefile管理方式,要将源码项目移植到android平台,需要按照android的makefile规则编写makefile,还要按android的规则部署源码目录,对一个有自己的makefile管理方法的大型项目来说,只是做一下makefile迁移工作就是一件很麻烦的事。
其实android ndk上的编译说到底也就是交叉编译,只要配置好交叉编译工具链,使用原有的makefile也是可以编译出在android运行的c、c++程序的。
以android-ndk-r4-crystax的ndk版本为例:
编译器路径 android-ndk-r4-crystax/build/prebuilt/linux-x86/arm-eabi-4.4.0/bin
名称前缀 arm-eabi-
头文件目录 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/include
库文件目录 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/lib
你可以试一下上面的配置,如果编译链接都没有问题,可以adb push到android设备上运行看看,什么结果?
有点崩溃,根本运行不起来,你也许想试试看android自带的ndk例子,确实是能够运行的,问题在哪儿呢?
只是正确配置了编译器、头文件、库文件还不够,还需要配置编译、链接的参数,android例子中编译链接的参数是什么呢?你也许想深究一下android的makefile,可是不久你会发现那是更崩溃的事情,里面用了很多的make脚本函数。其实android的makefile是可以把执行的详细命令输出来的,只要make的时候加上V=1即可。可以看到确实带了很多参数
编译参数:
-fpic
-mthumb-interwork
-ffunction-sections
-funwind-tables
-fstack-protector
-fno-short-enums
-Wno-psabi
-march=armv5te
-mtune=xscale
-msoft-float
-mthumb
-fomit-frame-pointer
-fno-strict-aliasing
-finline-limit=64
-Wa,--noexecstack
-D__ARM_ARCH_5__
-D__ARM_ARCH_5T__
-D__ARM_ARCH_5E__
-D__ARM_ARCH_5TE__
-DANDROID
链接参数:

-nostdlib
-Bdynamic
-Wl,-dynamic-linker,/system/bin/linker
-Wl,--gc-sections
-Wl,-z,noreloc
-Wl,--no-undefined
-Wl,-z,noexecstack
-L$(PLATFORM_LIBRARY_DIRECTORYS)
crtbegin_static.o
crtend_android.o
这其中链接参数中的-Wl,-dynamic-linker,/system/bin/linker、crtbegin_static.o、crtend_android.o是最关键的,android使用了自己的进程加载器,并且自定义了c运行时的启动结束。难怪先前编译的进程启动不了。

㈣ Makefile详解

make 命令执行时,需要根据一些规则来决定按照怎么样的方式去 编译和链接程序 ,这些规则就由 makefile 文件所指定。如果我们 makefile 文件写的足够好,make 命令会自动地根据当前的文件修改的情况来确定哪些文件需要重编译,从而自己编译所需要的文件和链接目标程序。

首先,本文将给出一个makefile文件的示例,以便大家能有一个直观感受,这个例子来源于 GNU的make使用手册 。在这个例子中,我们的工程有8个c文件,和3个头文件,我们要写一个makefile来告诉make命令如何编译和链接这几个文件。例子如下:

这个例子里 make 的编码规则如下:

a. 如果这个工程没有编译过,那么我们的所有c文件都要编译并被链接。
b. 如果这个工程的某几个c文件被修改,那么我们只编译被修改的c文件,并链接目标程序。
c. 如果这个工程的头文件被改变了,那么我们需要编译引用了这几个头文件的c文件,并链接目标程序。

在详细拆解上一节的 Makefile 之前,先来看下 Makefile 的基本范式。

target可以是一个 1) object file(可执行文件) ,2) 可执行文件 ,还可以是个3) label(标签) ,关于标签这个特性,在后面的 伪目标 章节还会有叙述。

prerequisites 就是,要生成那个target所需要的文件或是目标。 command 也就是 make 需要执行的命令,可以是任意的
shell 命令。

这是一个文件的依赖关系,也就是说,target 这一个或多个的目标文件依赖于 prerequisites 中的文件,其生成规则定义在 command 中。同时, prerequisites 中如果有一个以上的文件比target文件要新的话, command 所定义的命令就会被执行。这就是 Makefile 的规则,也是 Makefile 中 最核心 的内容。

有了这些规则后,再来分析上面的例子。在这个 makefile 中,目标文件(target)包含:

依赖文件(prerequisites)就是冒号后面的那些 .c 文件和 .h 文件。每一个 .o 文件都有一组依赖文件,而这些 .o 文件又是执行文件 edit 的依赖文件。

在定义好依赖关系后,后续的那一行定义了如何生成目标文件的系统命令, 一定要以一个tab键作为开头 。 make 会比较
targets 文件和 prerequisites 文件的修改日期,如果 prerequisites 文件的日期要比targets文件的日期要新,或者 target 不存在的话,那么,make就会执行后续定义的命令。

我们可以把这个内容保存在名字为 makefile 或 Makefile 的文件中,然后在该目录下直接输入命令 make 就可以生成可执行文件edit。如果要删除执行文件和所有的中间目标文件,那么,只要简单地执行一下 make clean 就可以了。 注:反斜线()是换行符的意思,这样比较便于阅读。

这里要说明一点的是, clean 不是一个文件,它只不过是一个动作名字,有点像C语言中的 lable 一样,其冒号后什么也没有,那么,make就不会去找它的依赖性,也就不会自动执行其后所定义的命令。要执行其后的命令(不仅用于 clean,其他 lable 同样适用),就要在 make 命令后显式指出这个 lable 的名字。这样的方法非常有用, 我们可以在一个 makefile 中定义不用的编译或是和编译无关的命令,比如程序的打包,程序的备份 ,等等。

在默认的方式下,也就是我们只输入make命令。那么,

这就是整个 make 的依赖性,make 会一层又一层地去找文件的依赖关系,直到最终编译出第一个目标文件。在找寻的过程中,如果出现错误,比如最后被依赖的文件找不到,那么make就会直接退出,并报错,而对于所定义的命令的错误,或是编译不成功,这些都不在 make 职责范围内。

通过上述分析,我们知道,像 clean 这种,没有被第一个目标文件直接或间接关联,那么它后面所定义的命令将不会被自动执行,不过,我们可以显示要 make 执行。即命令 make clean ,以此来清除所有的目标文件,以便重编译。

在上面的例子中可以看到,后缀为 .o 的一大串文件名写了两次,这样比较费时费力,而且如果文件有所增减,要修改的地方也非常多,对以后的维护造成困难。在这种情形下,我们可以在Makefile里使用变量代替这一大串依赖文件,这里变量的使用方式基本类似于shell脚本里变量的使用方法。

我们可以在makefile一开始就这样定义:

那么接下来我们就可以很方便地在我们的Makefile中以 $(objects) 的方式来使用这个变量了,于是如果有新的 .o 文件加入,我们只需简单地修改一下 objects 变量就可以了。

GNU 的 make 很强大,它可以自动推导文件以及文件依赖关系后面的命令,于是我们就没必要去在每一个 .o 文件后都写上类似的命令。因为,我们的make会自动识别,并自己推导命令。

只要make看到一个 .o 文件,它就会自动的把 .c 文件加在依赖关系中,如果make找到一个 FILENAME.o ,那么 FILENAME.c ,就会是 FILENAME.o 的依赖文件。并且 cc -c FILENAME.c 也会被推导出来,于是,我们的makefile 再也不用写得这么复杂。我们的新makefile就可以这么写了。

这种方法,也就是make的**。上面文件内容中,“.PHONY”表示,clean是个伪目标文件。

㈤ Linux平台Makefile文件的编写基础篇

目的:
基本掌握了 make 的用法,能在Linux系统上编程
环境:
Linux系统,或者有一台Linux服务器,通过终端连接。一句话:有Linux编译环境。
准备:
准备三个文件:file1.c, file2.c, file2.h
file1.c:
#include
#include "file2.h"
int main()
{
printf("print file1$$$$$$$$$$$$ ");
File2Print();
return 0;
}

file2.h:

#ifndef FILE2_H_
#define FILE2_H_

#ifdef __cplusplus

extern "C" {

#endif

void File2Print();

#ifdef __cplusplus

}

#endif

#endif


file2.c:
#include "file2.h"
void File2Print()
{
printf("Print file2********************** ");
}

基础:
先来个例子:
有这么个Makefile文件。(文件和Makefile在同一目录)
=== makefile 开始 ===
helloworld:file1.o file2.o
gcc file1.o file2.o -o helloworld

file1.o:file1.c file2.h
gcc -c file1.c -o file1.o

file2.o:file2.c file2.h

gcc -c file2.c -o file2.o


clean:

rm -rf *.o helloworld

=== makefile 结束 ===

一个 makefile 主要含有一系列的规则,如下:
A: B
(tab)
(tab)

每个命令行前都必须有tab符号。


上面的makefile文件目的就是要编译一个helloworld的可执行文件。让我们一句一句来解释:

helloworld : file1.o file2.o: helloworld依赖file1.o file2.o两个目标文件。

gcc File1.o File2.o -o helloworld: 编译出helloworld可执行文件。-o表示你指定 的目标文件名。


file1.o : file1.c: file1.o依赖file1.c文件。

gcc -c file1.c -o file1.o: 编译出file1.o文件。-c表示gcc 只把给它的文件编译成目标文件, 用源码文件的文件名命名但把其后缀由“.c”或“.cc”变成“.o”。在这句中,可以省略-o file1.o,编译器默认生成file1.o文件,这就是-c的作用。


file2.o : file2.c file2.h
gcc -c file2.c -o file2.o

这两句和上两句相同。


clean:

rm -rf *.o helloworld

当用户键入make clean命令时,会删除*.o 和helloworld文件。


如果要编译cpp文件,只要把gcc改成g++就行了。

写好Makefile文件,在命令行中直接键入make命令,就会执行Makefile中的内容了。


到这步我想你能编一个Helloworld程序了。


上一层楼:使用变量

上面提到一句,如果要编译cpp文件,只要把gcc改成g++就行了。但如果Makefile中有很多gcc,那不就很麻烦了。

第二个例子:

=== makefile 开始 ===
OBJS = file1.o file2.o
CC = gcc
CFLAGS = -Wall -O -g

helloworld : $(OBJS)
$(CC) $(OBJS) -o helloworld

file1.o : file1.c file2.h
$(CC) $(CFLAGS) -c file1.c -o file1.o

file2.o : file2.c file2.h
$(CC) $(CFLAGS) -c file2.c -o file2.o


clean:

rm -rf *.o helloworld
=== makefile 结束 ===


这里我们应用到了变量。要设定一个变量,你只要在一行的开始写下这个变量的名字,后 面跟一个 = 号,后面跟你要设定的这个变量的值。以后你要引用 这个变量,写一个 $ 符号,后面是围在括号里的变量名。


CFLAGS = -Wall -O –g,解释一下。这是配置编译器设置,并把它赋值给CFFLAGS变量。

-Wall: 输出所有的警告信息。

-O: 在编译时进行优化。

-g: 表示编译debug版本。


这样写的Makefile文件比较简单,但很容易就会发现缺点,那就是要列出所有的c文件。如果你添加一个c文件,那就需要修改Makefile文件,这在项目开发中还是比较麻烦的。



再上一层楼:使用函数

学到这里,你也许会说,这就好像编程序吗?有变量,也有函数。其实这就是编程序,只不过用的语言不同而已。

第三个例子:

=== makefile 开始 ===
CC = gcc

XX = g++
CFLAGS = -Wall -O –g

TARGET = ./helloworld

%.o: %.c

$(CC) $(CFLAGS) -c lt; -o [email protected]

%.o:%.cpp

$(XX) $(CFLAGS) -c lt; -o [email protected]


SOURCES = $(wildcard *.c *.cpp)
OBJS = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(SOURCES)))


$(TARGET) : $(OBJS)
$(XX) $(OBJS) -o $(TARGET)

chmod a+x $(TARGET)

clean:

rm -rf *.o helloworld
=== makefile 结束 ===

函数1:wildcard

产生一个所有以 '.c' 结尾的文件的列表。

SOURCES = $(wildcard *.c *.cpp)表示产生一个所有以 .c,.cpp结尾的文件的列表,然后存入变量 SOURCES 里。


函数2:patsubst

匹配替换,有三个参数。第一个是一个需要匹配的式样,第二个表示用什么来替换它,第三个是一个需要被处理的由空格分隔的列表。

OBJS = $(patsubst %.c,%.o,$(patsubst %.cc,%.o,$(SOURCES)))表示把文件列表中所有的.c,.cpp字符变成.o,形成一个新的文件列表,然后存入OBJS变量中。


%.o: %.c

$(CC) $(CFLAGS) -c lt; -o [email protected]

%.o:%.cpp

$(XX) $(CFLAGS) -c lt; -o [email protected]

这几句命令表示把所有的.c,.cpp编译成.o文件。

这里有三个比较有用的内部变量。 [email protected] 扩展成当前规则的目的文件名, lt; 扩展成依靠 列表中的第一个依靠文件,而 $^ 扩展成整个依靠的列表(除掉了里面所有重 复的文件名)。


chmod a+x $(TARGET)表示把helloworld强制变成可执行文件。

㈥ 在VC里如何用Makefile文件编译

运行cmd.exe (or command.com in win9x)->进到vc/bin目录->运行vc-vars32.bat->进到makefile 所在的目录->nmake /f makefile
从sourceforge上下载下来的libjpeg源代码中有一个makefile.vc的文件,可以通过nmake /f makefile.vc [nodebug=1]来编译libjpeg,但是只能编译静态库,如果需要编译dll以便在emacs等程序中使用的话,需要修改makefile.vc和jmorecfg.h文件。在makefile.vc文件中添加编译dll规则:
以下内容为程序代码:
libjpeg.lib: $(LIBOBJECTS) $(RM) libjpeg.lib lib -out:libjpeg.lib $(LIBOBJECTS) #
添加以下这行 libjpeg.dll: $(LIBOBJECTS) $(RM) libjpeg.dll link -dll -out:libjpeg.dll $(LIBOBJECTS) 在jmorecfg.h中添加#define _WIN32_#define JPEG_DLL 然后nmake /f makefile.vc nodebug=1就可以编译了。
将makefile复制为一个.mak文件,然后用VC打开即可!
.mak 就是一个makefile
可以指定怎样编译(命令行,必须先设置VC命令行环境)
vcvars32.bat可设置环境,在vc98/bin下 nmake /f XXXX.mak
如果有一个makefile就只要nmake就可以了。

㈦ 如何使用makefile

以hello_test.c文件为例
1.创建程序
在linux控制台界面下 ,输入vi hello_test.c,输入i进入编辑插入模式,输入代码如下:
#include <stdio.h>
int main(void)
{
printf("Hello,Word!/n");
return 0;

}
用gcc编译程序
输入命令:gcc hello_test.c
输入命令:ls
显示:a.out hello_test.c
输入命令:./a.out //执行程序
2.使用Makefile
(1)创建Makefile,在hello_test.c所在目录输入 vi Makefile
(2)输入Makefile内容。在vi插入模式下输入:
hello_test : hello_test.c
gcc -o hello_test hello_test.c //特别注意 gcc前面不是空格,而是tab间隔符,否则会出现makefile:2: *** 遗漏分隔符错误
clean :
rm -fr hello_test *.o *.core
(3)输入make,屏幕输出 gcc -o hello_test hello_test.c,表示编译已经通过。
生成 hello_test。

㈧ Makefile入门(八):make运行

一般来说,最简单的就是直接在命令行下输入make命令,make命令会找当前目录的makefile来执行,一切都是自动的。但也有时你也许只想让make重编译某些文件,而不是整个工程,而又有的时候你有几套编译规则,你想在不同的时候使用不同的编译规则,等等。本章节就是讲述如何使用 make命令的。

make命令执行后有三个退出码:

0 —— 表示成功执行。

1 —— 如果make运行时出现任何错误,其返回1。

2 —— 如果你使用了make的“-q”选项,并且make使得一些目标不需要更新,那么返回2。

Make的相关参数我们会在后续章节中讲述。

前面我们说过,GNU make找寻默认的Makefile的规则是在当前目录下依次找三个文件——“GNUmakefile”、“makefile”和“Makefile”。其按顺序找这三个文件,一旦找到,就开始读取这个文件并执行。

当然,我们也可以给make命令指定一个特殊名字的Makefile。要达到这个功能,我们要使用make的“-f”或是“--file”参数(“--makefile”参数也行)。例如,我们有个makefile的名字是“hchen.mk”,那么,我们可以这样来让make来执行这个文件:

make –f hchen.mk

如果在make的命令行是,你不只一次地使用了“-f”参数,那么,所有指定的makefile将会被连在一起传递给make执行。

一般来说,make的最终目标是makefile中的第一个目标,而其它目标一般是由这个目标连带出来的。这是make的默认行为。当然,一般来说,你的makefile中的第一个目标是由许多个目标组成,你可以指示make,让其完成你所指定的目标。要达到这一目的很简单,需在make命令后直接跟目标的名字就可以完成(如前面提到的“make clean”形式)

任何在makefile中的目标都可以被指定成终极目标,但是除了以“-”打头,或是包含了“=”的目标,因为有这些字符的目标,会被解析成命令行参数或是变量。甚至没有被我们明确写出来的目标也可以成为make的终极目标,也就是说,只要make可以找到其隐含规则推导规则,那么这个隐含目标同样可以被指定成终极目标。

有一个make的环境变量叫“MAKECMDGOALS”,这个变量中会存放你所指定的终极目标的列表,如果在命令行上,你没有指定目标,那么,这个变量是空值。这个变量可以让你使用在一些比较特殊的情形下。比如下面的例子:

基于上面的这个例子,只要我们输入的命令不是“make clean”,那么makefile会自动包含“foo.d”和“bar.d”这两个makefile。

使用指定终极目标的方法可以很方便地让我们编译我们的程序,例如下面这个例子:

从这个例子中,我们可以看到,这个makefile中有四个需要编译的程序——“prog1”, “prog2”, “prog3”和 “prog4”,我们可以使用“make all”命令来编译所有的目标(如果把all置成第一个目标,那么只需执行“make”),我们也可以使用 “make prog2”来单独编译目标“prog2”。

即然make可以指定所有makefile中的目标,那么也包括“伪目标”,于是我们可以根据这种性质来让我们的makefile根据指定的不同的目标来完成不同的事。在Unix世界中,软件发布时,特别是GNU这种开源软件的发布时,其makefile都包含了编译、安装、打包等功能。我们可以参照这种规则来书写我们的makefile中的目标。

<dl style="font-size: 12.6667px; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);">

<dt>“all”</dt>

<dd>这个伪目标是所有目标的目标,其功能一般是编译所有的目标。</dd>

<dt>clean”</dt>

<dd>这个伪目标功能是删除所有被make创建的文件。</dd>

<dt>“install”</dt>

<dd>这个伪目标功能是安装已编译好的程序,其实就是把目标执行文件拷贝到指定的目标中去。</dd>

<dt>print”</dt>

<dd>这个伪目标的功能是例出改变过的源文件。</dd>

<dt>“tar”</dt>

<dd>这个伪目标功能是把源程序打包备份。也就是一个tar文件。</dd>

<dt>“dist”</dt>

<dd>这个伪目标功能是创建一个压缩文件,一般是把tar文件压成Z文件。或是gz文件。</dd>

<dt>TAGS”</dt>

<dd>这个伪目标功能是更新所有的目标,以备完整地重编译使用。</dd>

<dt>“check”和“test”</dt>

<dd>这两个伪目标一般用来测试makefile的流程。</dd>

</dl>

当然一个项目的makefile中也不一定要书写这样的目标,这些东西都是GNU的东西,但是我想,GNU搞出这些东西一定有其可取之处(等你的 UNIX下的程序文件一多时你就会发现这些功能很有用了),这里只不过是说明了,如果你要书写这种功能,最好使用这种名字命名你的目标,这样规范一些,规范的好处就是——不用解释,大家都明白。而且如果你的makefile中有这些功能,一是很实用,二是可以显得你的makefile很专业(不是那种初学者的作品)。

有时候,我们不想让我们的makefile中的规则执行起来,我们只想检查一下我们的命令,或是执行的序列。于是我们可以使用make命令的下述参数:

“-n” “--just-print” “--dry-run” “--recon” 不执行参数,这些参数只是打印命令,不管目标是否更新,把规则和连带规则下的命令打印出来,但不执行,这些参数对于我们调试makefile很有用处。

“-t” “--touch” 这个参数的意思就是把目标文件的时间更新,但不更改目标文件。也就是说,make假装编译目标,但不是真正的编译目标,只是把目标变成已编译过的状态。

“-q” “--question” 这个参数的行为是找目标的意思,也就是说,如果目标存在,那么其什么也不会输出,当然也不会执行编译,如果目标不存在,其会打印出一条出错信息。

“-W <file>;” “--what-if=<file>;” “--assume-new=<file>;” “--new-file=<file>;” 这个参数需要指定一个文件。一般是是源文件(或依赖文件),Make会根据规则推导来运行依赖于这个文件的命令,一般来说,可以和“-n”参数一同使用,来查看这个依赖文件所发生的规则命令。

另外一个很有意思的用法是结合“-p”和“-v”来输出makefile被执行时的信息(这个将在后面讲述)。

下面列举了所有GNU make 3.80版的参数定义。其它版本和产商的make大同小异,不过其它产商的make的具体参数还是请参考各自的产品文档。

“-b” “-m” 这两个参数的作用是忽略和其它版本make的兼容性。

“-B” “--always-make” 认为所有的目标都需要更新(重编译)。

“-C <dir>” “--directory=<dir>” 指定读取makefile的目录。如果有多个“-C”参数,make的解释是后面的路径以前面的作为相对路径,并以最后的目录作为被指定目录。如:“make –C ~hchen/test –C prog”等价于“make –C ~hchen/test/prog”。

“—debug[=<options>]” 输出make的调试信息。它有几种不同的级别可供选择,如果没有参数,那就是输出最简单的调试信息。下面是<options>的取值:

a —— 也就是all,输出所有的调试信息。(会非常的多)

b —— 也就是basic,只输出简单的调试信息。即输出不需要重编译的目标。

v —— 也就是verbose,在b选项的级别之上。输出的信息包括哪个makefile被解析,不需要被重编译的依赖文件(或是依赖目标)等。

i —— 也就是implicit,输出所有的隐含规则。

j —— 也就是jobs,输出执行规则中命令的详细信息,如命令的PID、返回码等。

m —— 也就是makefile,输出make读取makefile,更新makefile,执行makefile的信息。

“-d” 相当于“--debug=a”。

“-e” “--environment-overrides” 指明环境变量的值覆盖makefile中定义的变量的值。

“-f=<file>” “--file=<file>” “--makefile=<file>” 指定需要执行的makefile。

“-h” “--help” 显示帮助信息。

“-i” “--ignore-errors” 在执行时忽略所有的错误。

“-I <dir>” “--include-dir=<dir>” 指定一个被包含makefile的搜索目标。可以使用多个“-I”参数来指定多个目录。

“-j [<jobsnum>]” “--jobs[=<jobsnum>]” 指同时运行命令的个数。如果没有这个参数,make运行命令时能运行多少就运行多少。如果有一个以上的“-j”参数,那么仅最后一个“-j”才是有效的。(注意这个参数在MS-DOS中是无用的)

“-k” “--keep-going” 出错也不停止运行。如果生成一个目标失败了,那么依赖于其上的目标就不会被执行了。

“-l <load>” “--load-average[=<load]” “—max-load[=<load>]” 指定make运行命令的负载。

“-n” “--just-print” “--dry-run” “--recon” 仅输出执行过程中的命令序列,但并不执行。

“-o <file>” “--old-file=<file>” “--assume-old=<file>” 不重新生成的指定的<file>,即使这个目标的依赖文件新于它。

“-p” “--print-data-base” 输出makefile中的所有数据,包括所有的规则和变量。这个参数会让一个简单的makefile都会输出一堆信息。如果你只是想输出信息而不想执行makefile,你可以使用“make -qp”命令。如果你想查看执行makefile前的预设变量和规则,你可以使用 “make –p –f /dev/null”。这个参数输出的信息会包含着你的makefile文件的文件名和行号,所以,用这个参数来调试你的 makefile会是很有用的,特别是当你的环境变量很复杂的时候。

“-q” “--question” 不运行命令,也不输出。仅仅是检查所指定的目标是否需要更新。如果是0则说明要更新,如果是2则说明有错误发生。

“-r” “--no-builtin-rules” 禁止make使用任何隐含规则。

“-R” “--no-builtin-variabes” 禁止make使用任何作用于变量上的隐含规则。

“-s” “--silent” “--quiet” 在命令运行时不输出命令的输出。

“-S” “--no-keep-going” “--stop” 取消“-k”选项的作用。因为有些时候,make的选项是从环境变量“MAKEFLAGS”中继承下来的。所以你可以在命令行中使用这个参数来让环境变量中的“-k”选项失效。

“-t” “--touch” 相当于UNIX的touch命令,只是把目标的修改日期变成最新的,也就是阻止生成目标的命令运行。

“-v” “--version” 输出make程序的版本、版权等关于make的信息。

“-w” “--print-directory” 输出运行makefile之前和之后的信息。这个参数对于跟踪嵌套式调用make时很有用。

“--no-print-directory” 禁止“-w”选项。

“-W <file>” “--what-if=<file>” “--new-file=<file>” “--assume-file=<file>” 假定目标<file>;需要更新,如果和“-n”选项使用,那么这个参数会输出该目标更新时的运行动作。如果没有“-n”那么就像运行UNIX的“touch”命令一样,使得<file>;的修改时间为当前时间。

“--warn-undefined-variables” 只要make发现有未定义的变量,那么就输出警告信息。

㈨ c语言编译运行出现Makefile.win已经改变,怎么改

这个提示是说你当前项目里有多个文件里都有叫main的函数,这样会导致系统不清楚从哪个main执行,建议你可以把其它文件里的main随便改下下名字比如叫main1什么的,只把你当前要运行的文件里的主函数改为main就行了。
或者建议如果只有一般的测试代码只有一个文件的那种,新建的时候就不要建项目,直接建文件就可以了。

㈩ iar使用makefile编译

要编译出在 iar开发板上运行的可执行文件,需要使用到交叉编译器 iar-linux-gnueabihf-gcc 来编译,在终端中输入如下命令:
iar-linux-gnueabihf-gcc -g -c led.s -o led.o
上述命令就是将 led.s 编译为 led.o,其中“-g”选项是产生调试信息,GDB 能够使用这些
调试信息进行代码调试。“-c”选项是编译源文件,但是不链接。“-o”选项是指定编译产生的文
件名字,这里我们指定 led.s 编译完成以后的文件名字为 led.o。执行上述命令以后就会编译生
成一个 led.o 文件
2 、arm-linux-gnueabihf-ld 链接文件
arm-linux-gnueabihf-ld 用来将众多的.o 文件链接到一个指定的链接位置。我们在学习SMT32 的时候基本就没有听过“链接”这个词,我们一般用 MDK 编写好代码,然后点击“编
译”,MDK 或者 IAR 就会自动帮我们编译好整个工程,最后再点击“下载”就可以将代码下载
到开发板中。这是因为链接这个操作 MDK 或者 IAR 已经帮你做好了,因此我们现在需要做的就是确定一下本试验最终的可执行文件其运行起始地址,也就是链接地址。这里我们要区分“存储地址”和“运行地址”这两个概念,“存储地址”就是可执行文件存储在哪里,可执行文件的存储地址可以随意选择。“运行地址”就是代码运行的时候所处的地址,这个我们在链接的时候就已经确定好了,代码要运行,那就必须处于运行地址处,否则代码肯定运行出错。比如设备支持 SD 卡、EMMC、NAND 启动,因此代码可以存储到 SD 卡、EMMC 或者 NAND 中,但是要运行的话就必须将代码从 SD 卡、EMMC 或者NAND 中拷贝到其运行地址(链接地址)处,“存储地址”和“运行地址”可以一样,比如STM32 的存储起始地址和运行起始地址都是 0X08000000,输入如下命令
arm-linux-gnueabihf-ld -Ttext 0X87800000 led.o -o led.elf
上述命令中-Ttext 就是指定链接地址,“-o”选项指定链接生成的 elf 文件名,这里我们命名
为 led.elf

热点内容
云免搭建脚本 发布:2024-11-20 07:25:10 浏览:310
企图SQL 发布:2024-11-20 07:24:29 浏览:136
冰火ftp 发布:2024-11-20 07:14:35 浏览:89
android实时视频播放 发布:2024-11-20 07:11:18 浏览:103
oracle存储过程数组定义 发布:2024-11-20 07:11:17 浏览:844
64的汇编编译器 发布:2024-11-20 07:05:43 浏览:856
保定市后推式存储货架哪里买 发布:2024-11-20 07:03:25 浏览:556
家用suv适合什么配置 发布:2024-11-20 07:01:45 浏览:818
java免费课程 发布:2024-11-20 06:54:14 浏览:264
手机可以直接升级方舟编译器吗 发布:2024-11-20 06:53:35 浏览:285