当前位置:首页 » 编程软件 » 编译原理常见语法

编译原理常见语法

发布时间: 2023-08-20 14:27:37

编译原理-LL1文法详细讲解

我们知道2型文法( CFG ),它的每个产生式类型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。

例如, 一个表达式的文法:

最终推导出 id + (id + id) 的句子,那么它的推导过程就会构成一颗树,即 CFG 分析树:

从分析树可以看出,我们从文法开始符号起,不断地利用产生式的右部替换产生式左部的非终结符,最终推导出我们想要的句子。这种方式我们称为自顶向下分析法。

从文法开始符号起,不断用非终结符的候选式(即产生式)替换当前句型中的非终结符,最终得到相应的句子。
在每一步推导过程中,我们需要做两个选择:

因为一个句型中,可能存在多个非终结符,我们就不确定选择那一个非终结符进行替换。
对于这种情况,我们就需要做强制规定,每次都选择句型中第一个非终结符进行替换(或者每次都选择句型中最后一个非终结符进行替换)。

自顶向下的语法分析采用最左推导方式,即总是选择每个句型的最左非终结符进行替换。

最终的结果是要推导出一个特定句子(例如 id + (id + id) )。
我们将特定句子看成一个输入字符串,而每一个非终结符对应一个处理方法,这个处理方法用来匹配输入字符串的部分,算法如下:

方法解析:

这种方式称为递归下降分析( Recursive-Descent Parsing ):

当选择的候选式不正确,就需要回溯( backtracking ),重新选择候选式,进行下一次尝试匹配。因为要不断的回溯,导致分析效率比较低。

这种方式叫做预测分析( Predictive Parsing ):

要实现预测分析,我们必须保证从文法开始符号起,每一个推导过程中,当前句型最左非终结符 A 对于当前输入字符 a ,只能得到唯一的 A 候选式。

根据上面的解决方法,我们首先想到,如果非终结符 A 的候选式只有一个以终结符 a 开头候选式不就行了么。
进而我们可以得出,如果一个非终结符 A ,它的候选式都是以终结符开头,并且这些终结符都各不相同,那么本身就符合预测分析了。

这就是S_文法,满足下面两个条件:

例子:

这就是一个典型的S_文法,它的每一个非终结符遇到任一终结符得到候选式是确定的。如 S -> aA | bAB , 只有遇到终结符 a 和 b 的时候,才能返回 S 的候选式,遇到其他终结符时,直接报错,匹配不成功。

虽然S_文法可以实现预测分析,但是从它的定义上看,S_文法不支持空产生式(ε产生式),极大地限制了它的应用。

什么是空产生式(ε产生式)?

例子

这里 A 有了空产生式,那么 S 的产生式组 S -> aA | bAB ,就可以是 a | bB ,这样 a , bb , bc 就变成这个文法 G 的新句子了。

根据预测分析的定义,非终结符对于任一终结符得到的产生式是确定的,要么能获取唯一的产生式,要么不匹配直接报错。

那么空产生式何时被选择呢?

由此可以引入非终结符 A 的后继符号集的概念:
定义: 由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符 a 的集合,就是这个非终结符 A 的后继符号集,记为 FOLLOW(A) 。

因此对于 A -> ε 空产生式,只要遇到非终结符 A 的后继符号集中的字符,可以选择这个空产生式。
那么对于 A -> a 这样的产生式,只要遇到终结符 a 就可以选择了。

由此我们引入的产生式可选集概念:
定义: 在进行推导时,选用非终结符 A 一个产生式 A→β 对应的输入符号的集合,记为 SELECT(A→β)

因为预测分析要求非终结符 A 对于输入字符 a ,只能得到唯一的 A 候选式。
那么对于一个文法 G 的所有产生式组,要求有相同左部的产生式,它们的可选集不相交。

在 S_文法基础上,我们允许有空产生式,但是要做限制:

将上面例子中的文法改造:

但是q_文法的产生式不能是非终结符打头,这就限制了其应用,因此引入LL(1)文法。

LL(1)文法允许产生式的右部首字符是非终结符,那么怎么得到这个产生式可选集。
我们知道对于产生式:

定义: 给定一个文法符号串 α , α 的 串首终结符集 FIRST(α) 被定义为可以从 α 推导出的所有串首终结符构成的集合。

定义已经了解清楚了,那么该如何求呢?
例如一个文法符号串 BCDe , 其中 B C D 都是非终结符, e 是终结符。

因此对于一个文法符号串 X1X2 … Xn ,求解 串首终结符集 FIRST(X1X2 … Xn) 算法:

但是这里有一个关键点,如何求非终结符的串首终结符集?

因此对于一个非终结符 A , 求解 串首终结符集 FIRST(A) 算法:

这里大家可能有个疑惑,怎么能将 FIRST(Bβ) 添加到 FIRST(A) 中,如果问文法符号串 Bβ 中包含非终结符 A ,就产生了循环调用的情况,该怎么办?

对于 串首终结符集 ,我想大家疑惑的点就是,串首终结符集到底是针对 文法符号串 的,还是针对 非终结符 的,这个容易弄混。
其实我们应该知道, 非终结符 本身就属于一个特殊的 文法符号串
而求解 文法符号串 的串首终结符集,其实就是要知道文法符号串中每个字符的串首终结符集:

上面章节我们知道了,对于非终结符 A 的 后继符号集 :
就是由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符的集合,记为 FOLLOW(A) 。

仔细想一下,什么样的终结符可以出现在非终结符 A 后面,应该是在产生式中就位于 A 后面的终结符。例如 S -> Aa ,那么终结符 a 肯定属于 FOLLOW(A) 。

因此求非终结符 A 的 后继符号集 算法:

如果非终结符 A 是产生式结尾,那么说明这个产生式左部非终结符后面能出现的终结符,也都可以出现在非终结符 A 后面。

我们可以求出 LL(1) 文法中每个产生式可选集:

根据产生式可选集,我们可以构建一个预测分析表,表中的每一行都是一个非终结符,表中的每一列都是一个终结符,包括结束符号 $ ,而表中的值就是产生式。
这样进行语法推导的时候,非终结符遇到当前输入字符,就可以从预测分析表中获取对应的产生式了。

有了预测分析表,我们就可以进行预测分析了,具体流程:

可以这么理解:

我们知道要实现预测分析,要求相同左部的产生式,它们的可选集是不相交。
但是有的文法结构不符合这个要求,要进行改造。

如果相同左部的多个产生式有共同前缀,那么它们的可选集必然相交。
例如:

那么如何进行改造呢?
其实很简单,进行如下转换:

如此文法的相同左部的产生式,它们的可选集是不相交,符合现预测分析。

这种改造方法称为 提取公因子算法

当我们自顶向下的语法分析时,就需要采用最左推导方式。
而这个时候,如果产生式左部和产生式右部首字符一样(即A→Aα),那么推导就可能陷入无限循环。
例如:

因此对于:

文法中不能包含这两种形式,不然最左推导就没办法进行。

例如:

它能够推导出如下:

你会惊奇的发现,它能推导出 b 和 (a)* (即由 0 个 a 或者无数个 a 生成的文法符号串)。其实就可以改造成:

因此消除 直接左递归 算法的一般形式:

例如:

消除间接左递归的方法就是直接带入消除,即

消除间接左递归算法:

这个算法看起来描述很多,其实理解起来很简单:

思考 : 我们通过 Ai -> Ajβ 来判断是不是间接左递归,那如果有产生式 Ai -> BAjβ 且 B -> ε ,那么它是不是间接左递归呢?
间接地我们可以推出如果一个产生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那么这个产生式是不是间接左递归。

Ⅱ 编译原理

4、文法G为:
A->aABe/Ba
B->dB/ε
构造LL(1)分析表并判断adae是否是该文法的句子。
5、文法G为:
A->i:=E;
E->E+E
E->E*E
E->i
构造SLR分析表,并判断i:=i*i是否是该文法的句子。
6、文法G为:
S->E
E->aB/bB
A->cA/d
B->Cb/d
构造该文法的LR(0)和SLR(1)分析表,并模拟分析句子bcd时分析栈和输入串的变化。
7、文法G为:
E->E+T/T
T->T*F/F
F->P^F/P
P->(E)/i
判断该文法是否为算符优先文法,若是,构造优先表。

Ⅲ 急急急,编译原理

using namespace std;

struct BiNode
{
char data;
BiNode *lchild, *rchild;
};
typedef BiNode *BiTree;

int CreateBiTree(BiTree &T, const char *s1, const char *s2, int len)
{
if (len<=0)
{
T = NULL;
return 1;
}
else
{
T = new BiNode;
T->data = *s1;
int i;
for ( i=0; i<len; i++) if (s2[i]==*s1) break;
CreateBiTree(T->lchild, s1+1, s2, i);
CreateBiTree(T->rchild, s1+i+1, s2+i+1, len-(i+1));
}
return 1;
}

int DestroyBiTree(BiTree &T)
{
if (T==NULL) return 1;
DestroyBiTree(T->lchild);
DestroyBiTree(T->rchild);
delete T;
T = NULL;
return 1;
}

int ATraverse(BiTree &T)
{
if (T==NULL) return 1;
ATraverse(T->lchild);
ATraverse(T->rchild);
cout<<T->data;
return 1;
}

main()
{
char a[2000],b[2000];
while(cin>>a>>b)
{
BiTree T;
int count=0;
int n;
for(n=0;a[n]!='\0';n++);
CreateBiTree(T,a,b,n);
ATraverse(T);
cout<<" ";

cout<<endl;
DestroyBiTree(T);

Ⅳ 编译原理笔记17:自下而上语法分析(4)LR(0)、SLR(1) 分析表的构造

(移进项目就是指圆点右边是终结符的项目,规约项目指的就是圆点在右部最右端的项目)

LR(0) 文法可以直接通过识别活前缀的 DFA 来构造 LR 分析表

假定 C = {I 0 , I 1 , ... , I n } (aka. LR(0) 项目规范族、DFA 状态集)

首先为文法产生式进行编号,拓广文法的产生式要标记为 0(这里就是后面分析表中 rj 的产生式编号 j 的由来)

然后令每个项目集 I k 的下标 k 作为分析器的状态(行首),包含 S' → .S 的集合下标为分析器的初态(也就是 DFA 的初态,一般都是 0 )。

下面用一个例子来说明 ACTION、GOTO 子表的构造:

SLR(1) 为解决冲突提出了一个简单的方法:通过识别活前缀的 DFA 和【简单向前看一个终结符】构造 SLR(1) 分析表。

如果我们的识别活前缀的 DFA 中存在移进-规约冲突、规约-规约冲突,都可以尝试使用这个方法来解决冲突。(这里说【尝试】,当然是因为 SLR 也只能解决一部分问题,并不是万能的灵丹妙药。。)

这里,我们拿前面那个 LR(0) 解决不了的文法来举例

该文法不是 LR(0) 文法,但是是 SLR(1) 文法。

观察上图 DFA 中的状态2,想象当我们的自动机正处于这个状态:次栈顶已经规约为 T 了,栈顶也是当前的状态 2 ,而当前剩余输入为 *。

如果这个自动机不会【往前多看一步】的话,那么对处于这个状态的自动机来说,看起来状态 2 中的移进项目和规约项目都是可选的。这就是移进-规约冲突。

想要解决这个冲突,就轮到【往前多看一步】上场了——把当前剩余输入考虑进来,辅助进行项目的选择:

对其他的冲突也使用同样的方法进行判断。

这种冲突性动作的解决办法叫做 SLR(1) 解决办法

准备工作部分,与 LR(0) 分析表的构造差不多:同样使用每个项目集的状态编号作为分析器的状态编号,也就同样用作行下标;同样使用拓广文法产生式作为 0 号产生式。

填表也和 LR(0) 类似,唯一的不同体现在对规约项的处理方法上:如果当前状态有项目 A → α.aβ 和 A → α. ,而次栈顶此时是 α 且读写头读到的是 a,那么当且仅当 a∈FOLLOW(A) 时,我们才会用 A → α 对 α 进行规约。

如果构造出来的表的每个入口都不含多重定义(也就是如上图中表格那样的,每个格子里面最多只有一个动作),那么该表就是该文法的 SLR(1) 表,这个文法就是 SLR(1) 文法。使用 SLR(1) 表的分析器叫做一个 SLR(1) 分析器。

任意的二义文法都不能构造出 SLR(1) 分析表

例:悬空 else

例:

这里的 L 可以理解为左值,R 可以理解为右值

经过计算可以确定其 DFA 如下图所示。

在 状态4 中,由于 "=" 同时存在于 FOLLOW(L) 与 FOLLOW(R) 中,因此该状态内存在移进-规约冲突,故该文法不是 SLR(1) 文法。

这样的非二义文法可以通过增加向前看终结符的个数来解决冲突(比如LL(2)、LR(2))但这会让问题更加复杂,故一般不采用。而二义文法无论向前看多少个终结符都无法解决二义性。

Ⅳ 编译原理 语法

编译原理不同教材用的表示不太一样,翻译也五花八门,我不是很确定你这个活前缀是什么意思。我按我知道的告诉你,我用“。”表示状态的位置,你的书上可能通常是一个黑点表示,先要建立文法的状态集合:
S1:S->。a
S2:S->a。
S3:S->。^
S4:S->^。
S5:S->。(T)
S6:S->(。T)
S7:S->(T。)
S8:S->(T)。
S9:T->。T,S
S10:T->T。,S
S11:T->T,。S
S12:T->T,S。
S13:T->。S
S14:T->S。
归集状态,和状态转换关系(这应该是要画成图的,这里没法画。。。)用I表示
I0:S1 S3 S5 S9 S13
输入a,I0->I1
I1:S2
输入^,I0->I2
I2:S4
输入(,I0->I3
I3:S6 S9 S13 S1 S3 S5
归约S,I0->I4
I4:S14
归约T,I0->I5
I5:S10
归约T,I3->I6
I6:S7
输入),I6->I7
I7:S8
输入,,I5->I8
I8:S11 S1 S3 S5
归约S,I8->I9
I9:S12
输入a,I8->I1
输入^,I8->I2
输入(,I8->I3
输入a,I3->I1
输入^,I3->I2
输入(,I3->I3
然后你要建立状态转换表,网络不能画表格。。。,你将就看看( $是结束符啊.还有你的文法没有开始,即S')
先把题目中的规则编个号:
(1) S->a
(2) S->^
(3) S->(T)
(4) T->T,S
(5) T->S
action goto
状态集 a ^ ( ) , $ S T
0 s1 s2 s3 14 10
1 acc
2 acc
3 s1
因为没有S'不知道最终怎么规约

Ⅵ 编译原理文法

编译原理文法的概念为:每一种自然语言或者是编程语言都需要文法来描述,文法相当于语言学的语义分析,即分析每一句话所表示的含义,编译器需要利用文法来完成其语法分析和语义分析。

字母表是元素的非空有穷集合,字母表中的元素称之为符号,因此,字母表也称之为符号集。例如C语言中的字母表由字母、数字、关键字等组成。

符号串,就是由符号集中的元素组成的序列。例如,给定符号集a、b、c,那么abc、abb、ac就是由该符号集组成的符号串。一个文法中,含有一个,或多个产生式,产生式,描述了将终结符集合和非终结符集合组合成串的方法。

Ⅶ 编译原理有关语法的题

短语:E+F*(E+i),F*(E+i),(E+i),E+i,i

直接短语:i(能直接推出来的)

句柄:i(最左直接短语)

素短语:i(并且至少含有一个终结符并除自身之外不含任何更小的素短语)

这些你根据语法树看,就比较好找了啊~

语法树如图:

Ⅷ 【编译原理】第二章:语言和文法



上述文法 表示,该文法由终结符集合 ,非终结符集合 ,产生式集合 ,以及开始符号 构成。
而产生式 表示,一个表达式(Expression) ,可以由一个标识符(Identifier) 、或者两个表达式由加号 或乘号 连接、或者另一个表达式用括号包裹( )构成。

约定 :在不引起歧义的情况下,可以只写产生式。如以上文法可以简写为:

产生式

可以简写为:

如上例中,

可以简写为:

给定文法 ,如果有 ,那么可以将符号串 重写 为 ,记作 ,这个过程称为 推导
如上例中, 可以推导出 或 或 等等。

如果 ,
可以记作 ,则称为 经过n步推导出 ,记作 。

推导的反过程称为 归约

如果 ,则称 是 的一个 句型(sentential form )。

由文法 的开始符号 推导出的所有句子构成的集合称为 文法G生成的语言 ,记作 。
即:


文法

表示什么呢?
代表小写字母;
代表数字;
表示若干个字母和数字构成的字符串;
说明 是一个字母、或者是字母开头的字符串。
那么这个文法表示的即是,以字母开头的、非空的字符串,即标识符的构成方式。

并、连接、幂、克林闭包、正闭包。
如上例表示为:

中必须包含一个 非终结符


产生式一般形式:
即上式中只有当上下文满足 与 时,才能进行从 到 的推导。

上下文有关文法不包含空产生式( )。


产生式的一般形式:
即产生式左边都是非终结符。

右线性文法
左线性文法
以上都成为正则文法。
即产生式的右侧只能有一个终结符,且所有终结符只能在同一侧。

例:(右线性文法)

以上文法满足右线性文法。
以上文法生成一个以字母开头的字母数字串(标识符)。
以上文法等价于 上下文无关文法

正则文法能描述程序设计语言中的多数单词。

正则文法能描述程序设计语言中的多数单词,但不能表示句子构造,所以用到最多的是CFG。

根节点 表示文法开始符号S;
内部节点 表示对产生式 的应用;该节点的标号是产生式左部,子节点从左到右表示了产生式的右部;
叶节点 (又称边缘)既可以是非终结符也可以是终结符。

给定一个句型,其分析树的每一棵子树的边缘称为该句型的一个 短语
如果子树高度为2,那么这棵子树的边缘称为该句型的一个 直接短语

直接短语一定是某产生式的右部,但反之不一定。

如果一个文法可以为某个句子生成 多棵分析树 ,则称这个文法是 二义性的

二义性原因:多个if只有一个else;
消岐规则:每个else只与最近的if匹配。

Ⅸ 编译原理的语法

使用“三二术”替代“语法树”。
不管是常数、对象变量、函数,还是“()”,表达式可以看成具有输出的中间量
量1 + 量2 - 量3 * 量4 & 量5 > 量6
按照表达式的从前到后的顺序,先取表达式三个量和两个计算符,把其中两量和一符优先计算,结果存放在中间量之中,而后再顺序取表达式一符一量,变成新三量两符,重复两量和一符优先计算,直到剩两量和一符,再得到最后计算结果。

Ⅹ 【编译原理】第四章:语法分析

从分析树的根节点到叶节点方向构造分析树。
即从开始符号S推导出词串w的过程。

例:

总是选择每个句型的 最左非终结符 进行替换。

总是选择每个句型的 最右非终结符 进行替换。

在自底向上的分析中,总是采用 最左规约 的方式,因此把 最左规约 称为 规范规约 ,对应的 最右推导 称为 规范推导

最左推导、最右推导具有唯一性。

自顶向下的语法分析采用最左推导方试,总是选择每个句型的 最左非终结符 进行替换。

由一组 过程 组成,每一个过程对应一个 非终结符
从文法开始符号S开始,递归调用文法中的其他非终结符,最终扫描整个输入串,完成分析。

如果其间有不唯一的产生式,就可能需要退回上一步重新尝试的情况,称为 回溯

预测分析 递归下降分析 技术的一个特例,通过输入中向前看固定个数的符号选择正确的产生式。
如果一个文法可以构造出向前看k个符号的预测分析器,称为LL(k)文法

预测分析不需要回溯,具有确定性。

含有 形式产生式的文法称为是 直接左递归 的。
如果一个文法中有一个非终结符A使得对某个串存在推导 ,那么这个文法是 左递归 的。其中,经过两步或以上推导产生的左递归,称为 间接左递归 的。
左递归会使递归下降分析器陷入无限循环。

文法

该文法是直接左递归的,会陷入无限循环。

将以上文法转换为:


即可消除左递归。事实上,这个过程把左递归转换成了右递归。

消除直接左递归的一般形式

使用代入法。

对于一个文法,通过改写产生式来 推迟决定 ,等获得足够多的输入信息再做正确的决定。

例:文法:

可以改写为:

从文法的开始符号S开始,每一步推导根据当前句型的最左非终结符A和当前输入符号α,选择正确的A-产生式。为保证分析的确定性,选出的候选式必须是唯一的。

S_文法(简单的确定型文法)

可能在某个举行中紧跟在A后面的终结符a的集合,记为 FOLLOW(A)
如果A是某个句型的最右符号,则将结束符“ $ ”添加到FOLLOW(A)中。

例:文法:






中,FOLLOW(B) = {a, c}

产生式 的可选集是指可以选用该产生式进行推导时对应的输入符号的集合,记为 SELECT(A->β)
例如
SELECT(A -> aβ)={a}
SELECT(A -> aβ | bγ)={a, b}
SELECT(A -> ε)=FOLLOW(A)

q_文法

文法符号串α串首终结符的集合,记作 FIRST(A)

热点内容
编程课v 发布:2025-02-04 08:45:00 浏览:103
模拟器能有手机脚本么 发布:2025-02-04 08:39:50 浏览:757
android显示html图片 发布:2025-02-04 08:35:31 浏览:791
如何查学信网账号及密码 发布:2025-02-04 08:33:55 浏览:502
linux32位jdk 发布:2025-02-04 08:33:55 浏览:247
康佳服务器连接失败是怎么回事 发布:2025-02-04 08:18:51 浏览:916
编译编译有什么 发布:2025-02-04 08:05:52 浏览:735
让外网访问内网服务器 发布:2025-02-04 08:02:20 浏览:783
奶块脚本菜地 发布:2025-02-04 07:46:35 浏览:238
条形码识别源码 发布:2025-02-04 07:45:55 浏览:457