windows多线程编程
A. 关于C++多线程编程教学
在Windows NT和Windows 9x中,多线程的编程实现需要调用一系列的API函数,如CreateThread、ResumeThread等,比较麻烦而且容易出错。我们使用Inprise公司的新一代RAD开发工具C++Builder,可以方便地实现多线程的编程。与老牌RAD工具Visual Basic和Delphi比,C++Builer不仅功能非常强大,而且它的编程语言是C++,对于系统开发语言是C的Windows系列操作系统,它具有其它编程语言无可比拟的优势。利用C++Builder提供的TThread对象,多线程的编程变得非常简便易用。那么,如何实现呢?且待我慢慢道来,让你体会一下多线程的强大功能。
1. 创建多线程程序:
首先,先介绍一下实现多线程的具体步骤。在C++Builder中虽然用Tthread对象说明了线程的概念,但是Tthread对象本身并不完整,需要在TThread下新建其子类,并重载Execute方法来使用线程对象。在C++Builder下可以很方便地实现这一点。
在C++Builder IDE环境下选择菜单File|New,在New栏中选中Thread Object,按OK,接下来弹出输入框,输入TThread对象子类的名字MyThread,这样C++Builder自动为你创建了一个名为TMyThread的TThread子类。同时编辑器中多了一个名为Unit2.cpp的单元,这就是我们创建的TMyThread子类的原码,如下:
#include
#pragma hdrstop
#include “Unit2.h”
#pragma package(smart_init)
//---------------------
// Important: Methods and properties of objects in VCL can only be
// used in a method called using Synchronize, for example:
//
// Synchronize(UpdateCaption);
//
// where UpdateCaption could look like:
//
// void __fastcall MyThread::UpdateCaption()
// {
// Form1->Caption = “Updated in a thread”;
// }
//--------------------
__fastcall MyThread::MyThread(bool CreateSuspended)
: TThread(CreateSuspended)
{
}
//--------------------
void __fastcall MyThread::Execute()
{
//---- Place thread code here ----
}
//---------------------
其中的Execute()函数就是我们要在线程中实现的任务的代码所在处。在原代码中包含Unit2.cpp,这个由我们创建的TMyThread对象就可以使用了。使用时,动态创建一个TMyThread 对象,在构造函数中使用Resume()方法,那么程序中就增加了一个新的我们自己定义的线程TMyThread,具体执行的代码就是Execute()方法重载的代码。要加载更多的线程,没关系,只要继续创建需要数量的TMyThread 对象就成。
B. windows环境,多线程情况下,C语言向文件写入数据。
下面的程序,编译之后,你可以运行很多个实例,目前我将文件写在了D:\1.txt,每个程序写1000行数据,这些值你可以自己更改(比如 写在C:,每个程序写10000行等),等程序都写完后,你可以去文件中查看写文件的结果。补充一下,我是在VC6.0环境中写的,所以windows.h,如果你不是在这个环境中的话,可能需要修改一些定义,比如DWORD等。其他的API都是windows平台提供的API;
#include <stdio.h>
#include "windows.h"
int main()
{
//获取进程ID,因为你希望是多个进程运行同时写一个文件,所以,我们打印出进程ID
DWORD dwProcessID = GetCurrentProcessId();
//初始化我们要写入文件中的内容,及该内容长度;
char szContent[100] = {0};
sprintf(szContent,"process[%u] write file\r\n",dwProcessID);
DWORD dwContentLen = strlen(szContent);
//创建互斥量,这样可以进行进程间的互斥,当然用这个也可以做线程间的互斥
HANDLE hMutex = CreateMutex(NULL,FALSE,"MyFileMutex");
if (NULL == hMutex)
{
printf("[%u]Create/Open Mutex error!\r\n",dwProcessID);
return 1;
}
//创建或打开文件
HANDLE hFile = CreateFile("D:\\1.txt",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_WRITE | FILE_SHARE_READ,NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_ARCHIVE,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
printf("[%u]Creat/Open file error!\r\n",dwProcessID);
return 1;
}
//循环写入文件
for(int i = 0; i < 1000 ; i++)
{
//等待临界资源,即锁定文件
WaitForSingleObject(hMutex,INFINITE);
printf("Process[%u] Get the signal\r\n",dwProcessID);
DWORD len = 0;
//因为是共享写文件,即多个程序写一个文件,所以一定要将文件指针偏移到尾部
SetFilePointer(hFile,0,NULL,FILE_END);
//写入文件
BOOL rnt = WriteFile(hFile,szContent,dwContentLen,&len,NULL);
if (rnt == FALSE)
{
printf("Process[%u] Fail to write file\r\n",dwProcessID);
}
//释放互斥量,解除锁定
ReleaseMutex(hMutex);
//加个Sleep便于我们中间观察结果
Sleep(30);
}
CloseHandle(hMutex);
CloseHandle(hFile);
return 0;
}
应你要求,我把AIP中的宏定义解释如下:
HANDLE hFile = CreateFile("D:\\1.txt",
GENERIC_READ | GENERIC_WRITE,//表示程序对该文件有读和写的权限
FILE_SHARE_WRITE | FILE_SHARE_READ,//表示可以多个程序共享读和写的权限
NULL,
OPEN_ALWAYS,//表示打开该文件,如果该文件不存在,则创建该文件
FILE_ATTRIBUTE_ARCHIVE,//文件的属性为存档
NULL);
WaitForSingleObject(hMutex,INFINITE);
//INFINITE表示永远等待,直到hMutex有信号为止
SetFilePointer(hFile,0,NULL,FILE_END);
//FILE_END表示从文件尾部开始偏移;实际此举就是将文件指针偏移到文件尾部;
C. 浅谈linux多线程编程和Windows多线程编程的异同
转载自fychit创意空间 很早以前就想写写linux下多线程编程和windows下的多线程编程了,但是每当写时又不知道从哪个地方写起,怎样把自己知道的东西都写出来,下面我就谈谈linux多线程及线程同步,并将它和windows的多线程进行比较,看看他们之间有什么相同点和不同的地方。
其实最开始我是搞windows下编程的,包括windows编程,windows 驱动,包括usb驱动,ndis驱动,pci驱动,1394驱动等等,同时也一条龙服务,做windows下的应用程序开发,后面慢慢的我又对linux开发产生比较深的兴趣和爱好,就转到搞linux开发了。在接下来的我还会写一些博客,主要是写linux编程和windows编程的区别吧,现在想写的是linux下usb驱动和windows下usb驱动开发的区别,这些都是后话,等我将linux多线程和windows多线程讲解完后,我再写一篇usb驱动,谈谈windows 和linux usb驱动的东东。好了,言归正传。开始将多线程了。
首先我们讲讲为什么要采用多线程编程,其实并不是所有的程序都必须采用多线程,有些时候采用多线程,性能还没有单线程好。所以我们要搞清楚,什么时候采用多线程。采用多线程的好处如下:
(1)因为多线程彼此之间采用相同的地址空间,共享大部分的数据,这样和多进程相比,代价比较节俭,因为多进程的话,启动新的进程必须分配给它独立的地址空间,这样需要数据表来维护代码段,数据段和堆栈段等等。
(2)多线程和多进程相比,一个明显的优点就是线程之间的通信了,对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。但是对于多线程就不一样了。他们之间可以直接共享数据,比如最简单的方式就是共享全局变量。但是共享全部变量也要注意哦,呵呵,必须注意同步,不然后果你知道的。呵呵。
(3)在多cpu的情况下,不同的线程可以运行不同的cpu下,这样就完全并行了。
反正我觉得在这种情况下,采用多线程比较理想。比如说你要做一个任务分2个步骤,你为提高工作效率,你可以多线程技术,开辟2个线程,第一个线程就做第一步的工作,第2个线程就做第2步的工作。但是你这个时候要注意同步了。因为只有第一步做完才能做第2步的工作。这时,我们可以采用同步技术进行线程之间的通信。
针对这种情况,我们首先讲讲多线程之间的通信,在windows平台下,多线程之间通信采用的方法主要有:
(1)共享全局变量,这种方法是最容易想到的,呵呵,那就首先讲讲吧,比如说吧,上面的问题,第一步要向第2步传递收据,我们可以之间共享全局变量,让两个线程之间传递数据,这时主要考虑的就是同步了,因为你后面的线程在对数据进行操作的时候,你第一个线程又改变了数据的内容,你不同步保护,后果很严重的。你也知道,这种情况就是读脏数据了。在这种情况下,我们最容易想到的同步方法就是设置一个bool flag了,比如说在第2个线程还没有用完数据前,第一个线程不能写入。有时在2个线程所需的时间不相同的时候,怎样达到最大效率的同步,就比较麻烦了。咱们可以多开几个缓冲区进行操作。就像生产者消费者一样了。如果是2个线程一直在跑的,由于时间不一致,缓冲区迟早会溢出的。在这种情况下就要考虑了,是不让数据写入还是让数据覆盖掉老的数据,这时候就要具体问题具体分析了。就此打住,呵呵。就是用bool变量控制同步,linux 和windows是一样的。
既然讲道了这里,就再讲讲其它同步的方法。同样 针对上面的这个问题,共享全局变量同步问题。除了采用bool变量外,最容易想到的方法就是互斥量了。呵呵,也就是传说中的加锁了。windows下加锁和linux下加锁是类似的。采用互斥量进行同步,要想进入那段代码,就先必须获得互斥量。
linux上互斥量的函数是:
windows下互斥量的函数有:createmutex 创建一个互斥量,然后就是获得互斥量waitforsingleobject函数,用完了就释放互斥量ReleaseMutex(hMutex),当减到0的时候 内核会才会释放其对象。下面是windows下与互斥的几个函数原型。
HANDLE WINAPI CreateMutex(
__in LPSECURITY_ATTRIBUTES lpMutexAttributes,
__in BOOL bInitialOwner,
__in LPCTSTR lpName
);
可以可用来创建一个有名或无名的互斥量对象
第一参数 可以指向一个结构体SECURITY_ATTRIBUTES一般可以设为null;
第二参数 指当时的函数是不是感应感应状态 FALSE为当前拥有者不会创建互斥
第三参数 指明是否是有名的互斥对象 如果是无名 用null就好。
DWORD WINAPI WaitForSingleObject(
__in HANDLE hHandle,
__in DWORD dwMilliseconds
);
第一个是 创建的互斥对象的句柄。第二个是 表示将在多少时间之后返回 如果设为宏INFINITE 则不会返回 直到用户自己定义返回。
对于linux操作系统,互斥也是类似的,只是函数不同罢了。在linux下,和互斥相关的几个函数也要闪亮登场了。
pthread_mutex_init函数:初始化一个互斥锁;
pthread_mutex_destroy函数:注销一个互斥锁;
pthread_mutex_lock函数:加锁,如果不成功,阻塞等待;
pthread_mutex_unlock函数:解锁;
pthread_mutex_trylock函数:测试加锁,如果不成功就立即返回,错误码为EBUSY;
至于这些函数的用法,google上一搜,就出来了,呵呵,在这里不多讲了。windows下还有一个可以用来保护数据的方法,也是线程同步的方式
就是临界区了。临界区和互斥类似。它们之间的区别是,临界区速度快,但是它只能用来同步同一个进程内的多个线程。临界区的获取和释放函数如下:
EnterCriticalSection() 进入临界区; LeaveCriticalSection()离开临界区。 对于多线程共享内存的东东就讲到这里了。
(2)采用消息机制进行多线程通信和同步,windows下面的的消息机制的函数用的多的就是postmessage了。Linux下的消息机制,我用的较少,就不在这里说了,如果谁熟悉的,也告诉我,呵呵。
(3)windows下的另外一种线程通信方法就是事件和信号量了。同样针对我开始举得例子,2个线程同步,他们之间传递信息,可以采用事件(Event)或信号量(Semaphore),比如第一个线程完成生产的数据后,就必须告诉第2个线程,他已经把数据准备好了,你可以来取走了。第2个线程就把数据取走。呵呵,这里可以采用消息机制,当第一个线程准备好数据后,就直接postmessage给第2个线程,按理说采用postmessage一个线程就可以搞定这个问题了。呵呵,不是重点,省略不讲了。
对于linux,也有类似的方法,就是条件变量了,呵呵,这里windows和linux就有不同了。要特别讲讲才行。
对于windows,采用事件和信号量同步时候,都会使用waitforsingleobject进行等待的,这个函数的第一个参数是一个句柄,在这里可以是Event句柄,或Semaphore句柄,第2个参数就是等待的延迟,最终等多久,单位是ms,如果这个参数为INFINITE,那么就是无限等待了。释放信号量的函数为ReleaseSemaphore();释放事件的函数为SetEvent。当然使用这些东西都要初始化的。这里就不讲了。Msdn一搜,神马都出来了,呵呵。神马都是浮云!
对于linux操作系统,是采用条件变量来实现类似的功能的。Linux的条件变量一般都是和互斥锁一起使用的,主要的函数有:
pthread_mutex_lock ,
pthread_mutex_unlock,
pthread_cond_init
pthread_cond_signal
pthread_cond_wait
pthread_cond_timewait
D. 高手进,关于C语言在windows上建立多线程的问题(VC6.0上实现)
东西,往往实例才是最让人感兴趣的,老是学基础理论,不动手,感觉没有成就感,呵呵。
下面先来一个实例。我们通过创建两个线程来实现对一个数的递加。
或许这个实例没有实际运用的价值,但是稍微改动一下,我们就可以用到其他地方去拉。
下面是我们的代码:
/*thread_example.c : c multiple thread programming in linux
*author : falcon
*E-mail : [email protected]
*/
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>
#define MAX 10
pthread_t thread[2];
pthread_mutex_t mut;
int number="0", i;
void *thread1()
{
printf ("thread1 : I'm thread 1\n");
for (i = 0; i < MAX; i++)
{
printf("thread1 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(2);
}
printf("thread1 :主函数在等我完成任务吗?\n");
pthread_exit(NULL);
}
void *thread2()
{
printf("thread2 : I'm thread 2\n");
for (i = 0; i < MAX; i++)
{
printf("thread2 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(3);
}
printf("thread2 :主函数在等我完成任务吗?\n");
pthread_exit(NULL);
}
void thread_create(void)
{
int temp;
memset(&thread, 0, sizeof(thread)); //comment1
/*创建线程*/
if((temp = pthread_create(&thread[0], NULL, thread1, NULL)) != 0) //comment2
printf("线程1创建失败!\n");
else
printf("线程1被创建\n");
if((temp = pthread_create(&thread[1], NULL, thread2, NULL)) != 0) //comment3
printf("线程2创建失败");
else
printf("线程2被创建\n");
}
void thread_wait(void)
{
/*等待线程结束*/
if(thread[0] !=0) { //comment4
pthread_join(thread[0],NULL);
printf("线程1已经结束\n");
}
if(thread[1] !=0) { //comment5
pthread_join(thread[1],NULL);
printf("线程2已经结束\n");
}
}
int main()
{
/*用默认属性初始化互斥锁*/
pthread_mutex_init(&mut,NULL);
printf("我是主函数哦,我正在创建线程,呵呵\n");
thread_create();
printf("我是主函数哦,我正在等待线程完成任务阿,呵呵\n");
thread_wait();
return 0;
}
下面我们先来编译、执行一下
引文:
falcon@falcon:~/program/c/code/ftp$ gcc -lpthread -o thread_example thread_example.c
falcon@falcon:~/program/c/code/ftp$ ./thread_example
我是主函数哦,我正在创建线程,呵呵
线程1被创建
线程2被创建
我是主函数哦,我正在等待线程完成任务阿,呵呵
thread1 : I'm thread 1
thread1 : number = 0
thread2 : I'm thread 2
thread2 : number = 1
thread1 : number = 2
thread2 : number = 3
thread1 : number = 4
thread2 : number = 5
thread1 : number = 6
thread1 : number = 7
thread2 : number = 8
thread1 : number = 9
thread2 : number = 10
thread1 :主函数在等我完成任务吗?
线程1已经结束
thread2 :主函数在等我完成任务吗?
线程2已经结束
实例代码里头的注释应该比较清楚了吧,下面我把网路上介绍上面涉及到的几个函数和变量给引用过来。
引文:
线程相关操作
一 pthread_t
pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义:
typedef unsigned long int pthread_t;
它是一个线程的标识符。
二 pthread_create
函数pthread_create用来创建一个线程,它的原型为:
extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,
void *(*__start_routine) (void *), void *__arg));
第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。这里,我们的函数thread不需要参数,所以最后一个参数设为空指针。第二个参数我们也设为空指针,这样将生成默认属性的线程。对线程属性的设定和修改我们将在下一节阐述。当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。
三 pthread_join pthread_exit
函数pthread_join用来等待一个线程的结束。函数原型为:
extern int pthread_join __P ((pthread_t __th, void **__thread_return));
第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为:
extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));
唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给 thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。
在这一节里,我们编写了一个最简单的线程,并掌握了最常用的三个函数pthread_create,pthread_join和pthread_exit。下面,我们来了解线程的一些常用属性以及如何设置这些属性。
互斥锁相关
互斥锁用来保证一段时间内只有一个线程在执行一段代码。
一 pthread_mutex_init
函数pthread_mutex_init用来生成一个互斥锁。NULL参数表明使用默认属性。如果需要声明特定属性的互斥锁,须调用函数 pthread_mutexattr_init。函数pthread_mutexattr_setpshared和函数 pthread_mutexattr_settype用来设置互斥锁属性。前一个函数设置属性pshared,它有两个取值, PTHREAD_PROCESS_PRIVATE和PTHREAD_PROCESS_SHARED。前者用来不同进程中的线程同步,后者用于同步本进程的不同线程。在上面的例子中,我们使用的是默认属性PTHREAD_PROCESS_ PRIVATE。后者用来设置互斥锁类型,可选的类型有PTHREAD_MUTEX_NORMAL、PTHREAD_MUTEX_ERRORCHECK、 PTHREAD_MUTEX_RECURSIVE和PTHREAD _MUTEX_DEFAULT。它们分别定义了不同的上所、解锁机制,一般情况下,选用最后一个默认属性。
二 pthread_mutex_lock pthread_mutex_unlock pthread_delay_np
pthread_mutex_lock声明开始用互斥锁上锁,此后的代码直至调用pthread_mutex_unlock为止,均被上锁,即同一时间只能被一个线程调用执行。当一个线程执行到pthread_mutex_lock处时,如果该锁此时被另一个线程使用,那此线程被阻塞,即程序将等待到另一个线程释放此互斥锁。
注意:
1 需要说明的是,上面的两处sleep不光是为了演示的需要,也是为了让线程睡眠一段时间,让线程释放互斥锁,等待另一个线程使用此锁。下面的参考资料1里头说明了该问题。但是在linux下好像没有pthread_delay_np那个函数(我试了一下,提示没有定义该函数的引用),所以我用了sleep来代替,不过参考资料2中给出另一种方法,好像是通过pthread_cond_timedwait来代替,里头给出了一种实现的办法。
2 请千万要注意里头的注释comment1-5,那是我花了几个小时才找出的问题所在。
如果没有comment1和comment4,comment5,将导致在pthread_join的时候出现段错误,另外,上面的comment2和comment3是根源所在,所以千万要记得写全代码。因为上面的线程可能没有创建成功,导致下面不可能等到那个线程结束,而在用pthread_join的时候出现段错误(访问了未知的内存区)。另外,在使用memset的时候,需要包含string.h头文件哦
E. 浅谈linux 多线程编程和 windows 多线程编程的异同
linux下线程的实现,linux的线程编程有两个库pthread和pth,对于pthread的实现是内核方式的实现,每个线程在kernel中都有task结构与之对应,也就是说用ps命令行是可以看见多个线程,线程的调度也是由内核中的schele进行的。
再来看看Windows的多线程,Windows NT和Windows95是一个抢先型多任务、多线程操作系统。因为它使用抢先型的多任务,所以它拥有与UNIX同样平滑的处理和进程独立。多线程就更进一步。一个独立的程序默认是使用一个线程,不过它可以将自己分解为几个独立的线程来执行,例如,其中的一个线程可以发送一个文件到打印机,而另一个可以响应用户的输入。这个简单的程序设计修改可以明显减少用户等待的时间,让用户无需担心长时间的计算、重绘屏幕、文件读写等带来的不便。
多线程还可以让你从许多高端的多处理器NT机器中得到好处。例如,你购买了一个高级的RISC机器,可以使用多达10个CPU芯片,但在开始的时候你只购买了一个CPU。你写了一个简单的Mandelbrot set程序,你发现需要15秒的时间来重新绘制Mandelbrot set的画面。
那么,Windows平台的线程和类Unix平台(包括Linux)的进程的区别是什么呢?
熟悉WIN32编程的人一定知道,WIN32的进程管理方式与UNIX上有着很大区别,在UNIX里,只有进程的概念,但在WIN32里却还有一个“线程”的概念,那么UNIX和WIN32在这里究竟有着什么区别呢?
UNIX里的fork是七十年代UNIX早期的开发者经过长期在理论和实践上的艰苦探索后取得的成果,一方面,它使操作系统在进程管理上付出了最小的代价,另一方面,又为程序员提供了一个简洁明了的多进程方法。
WIN32里的进程/线程是继承自OS/2的。在WIN32里,“进程”是指一个程序,而“线程”是一个“进程”里的一个执行“线索”。从核心上讲,WIN32的多进程与UNIX并无多大的区别,在WIN32里的线程才相当于UNIX的进程,是一个实际正在执行的代码。但是,WIN32里同一个进程里各个线程之间是共享数据段的。这才是与UNIX的进程最大的不同。
对于多任务系统,共享数据区是必要的,但也是一个容易引起混乱的问题,在WIN32下,一个程序员很容易忘记线程之间的数据是共享的这一情况,一个线程修改过一个变量后,另一个线程却又修改了它,结果引起程序出问题。但在UNIX下,由于变量本来并不共享,而由程序员来显式地指定要共享的数据,使程序变得更清晰与安全。