etl脚本
Ⅰ 为什么要用etl工具自己手动写脚本然后运行不是也可以么
成品ETL工具与手工写脚本之比较:
一、灵活性来讲:ETL工具比较灵活,需要在此平台上设置规则定义,前期是需要工具先前必须已有支持功能,如果需要扩展,要ETL工具源厂商开发。而自己写脚本只需先前好好调研需求,自己写能实现的功能即可。俗话说得好“求人不如求己”哈哈哈!
二、难易度:ETL工具相对上手比较容易,工程师只需具备两个必要条件:1 、对数据库熟悉 2、对客户的业务逻辑了解。手动写脚本呢?不仅要具备操作ETL工具的条件,还要必须有一定技术水平。
三、后期管理与维护:ETL工具非常容易,这点上是用工具的最给力的优势。可能也是ETL工具诞生的缘由吧!原因:人力少不说,如有新的需求,只需稍加改动,图形配置定义即可。而手工编码呢?较难。需要重又开发写程序,随着数据信息的日积月累,每日数据的递增,更新。开发的速度赶不上需求的更新,严重到先前开发架构不合理甚至于有可能推倒重来的风险。如果取中间,既有图形配置有兼具脚本开发功能,有款中国的Beeload/ BeeDI
四、性能和效率:这方面取决于多方面如:1、硬件:服务器 CPU 内存 2、数据库类型 数据类型 3、网络状况 4 、ETL 工具的配置 设计。。。。。整体来说 工具属于较高范畴,各家成熟ETL 不一致、各有千秋。手工写脚本就要看编程者的水平啦!因人而异,如果直接在数据库上写存储过兴许比任何一家成品工具高得多。在性能上,工具当属老美的informatica IBM 的DS
五、开发周期:工具只需操作上源厂商负责培训,再把客户目前需求了解透彻,周期很短,上线见效快。手工编码不仅需要把客户(当前)需求了解透彻,未来需求也要有所预测,再进行开发。这样周期就不得而知了。
六、工作量:从上述些显然保守点得出:ETL工具属中等,手工编码属较重。写好程序还需大量测试工具,不断修正BUG 与完善。成熟工具已把这些工具先前做过了,即使有,也是可以容忍个别,源厂商可以分担修正。
七、投入成本价格:ETL工具前期成本投入较多,钞票先付。后期维护成本相对低。编写脚本,先期投入人力(工程师的工薪)中期大量测试人力,后期维护人力(工程师的工薪)看似相对较低。貌似不要票子的开源滴ETL工具 Kettle,后期才付费(服务费与培训费)
总之不管是用工具还是自己写脚本,要全盘考虑,根据各自项目大小,成本,愿意付出哪部分,适合的才是最佳滴!
Ⅱ 用sql脚本写ETL
学好SQL就行了,DML/DDL. ETL可以用很多工具来实现,比如Shell, Perl, Informatica, Ab Initio等等, SQL本身的逻辑和处理工作就是ETL的过程. 如果是用SQL来实现ETL调度管理,可以先创建数据库表,然后,通过SQL实现Insert/Update/Delete来控制ETL脚本的被调度。
Ⅲ perl脚本中出现$etl_pub这个少年,没有事先定义的,应该是内置的,大神们谁认识他,请赐教
没有见过。
加上use strict; 试试看报错么
Ⅳ 怎么在shell脚本中调度 ETL job
DS的JOB在linux下调用,一般是通过DS自带的一些命令行实现的
比如: dsjob -run 这个就可以用来运行JOB,dsjob还有很多东西,可以参考官方文档,上面很详细,JOB的调度,执行都有的
Ⅳ etl的概念,etl和elt数据处理上的区别
对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。
从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。
再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。
在开发的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 SQL SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。
也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。
哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。
用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。
用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。
所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。
ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。
控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是 DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。
数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。
有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。
我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。
Ⅵ 怎么在shell脚本中调度 etl job
学好SQL就行了,DML/DDL. ETL可以用很多工具来实现,比如Shell, Perl, Informatica, Ab Initio等等, SQL本身的逻辑和处理工作就是ETL的过程. 如果是用SQL来实现ETL调度管理,可以先创建数据库表,然后,通过SQL实现Insert/Update/Delete来控制ET
Ⅶ ETL的工具应用
对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。
从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。
再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。
在开发的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 SQL SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。
也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。
哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。
用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。
用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。
所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。
ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。
控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。
数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。
有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。
我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。
Ⅷ 什么是数据ETL
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
数据仓库是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。
(8)etl脚本扩展阅读:
ETL与ELT:
ETL所描述的过程,一般常见的作法包含ETL或是ELT(Extract-Load-Transform),并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。
ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。
工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。当然,为了这些好处,付出的代价便是金钱。
参考资料来源:网络-ETL
Ⅸ ETL什么意思
ETL,Extraction-Transformation-Loading的缩写,中文名称为数据抽取、转换和加载。
一般随着业务的发展扩张,产线也越来越多,产生的数据也越来越多,这些数据的收集方式、原始数据格式、数据量、存储要求、使用场景等方面有很大的差异。
数据抽取是指把ODS源数据抽取到DW中,数据拉取,清洗完之后,就需要展示了。一般是把清洗好的数据加载到mysql中,然后在各系统中使用,或者使用Tableau直接给相关人员展示。元数据管理系统对于数据仓库来说是必须的,并且相关人员必须定时维护,如果元数据和数据仓库中的变动不同步,那么元数据系统就形同虚设。
(9)etl脚本扩展阅读
ETL所描述的过程,一般常见的作法包含ETL或是ELT,并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, 是商业智能项目重要的一个环节。
Ⅹ etl是什么
ETL,Extraction-Transformation-Loading的缩写,中文名称为数据提取、转换和加载。
ETL工具有:OWB(Oracle
Warehouse
Builder)、ODI(Oracle
Data
Integrator)、Informatic
PowerCenter、Trinity、AICloudETL、DataStage、Repository
Explorer、Beeload、Kettle、DataSpider
ETL负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
ETL一词较常出现在数据仓库,但其对象并不局限于数据仓库。
ETL是数据仓库中的非常重要的一环。它是承前启后的必要的一步。相对于关系数据库,数据仓库技术没有严格的数学理论基础,它更面向实际工程应用。所以从工程应用的角度来考虑,按着物理数据模型的要求加载数据并对数据进行一些系列处理,处理过程与经验直接相关,同时这部分的工作直接关系数据仓库中数据的质量,从而影响到联机分析处理和数据挖掘的结果的质量。
数据仓库是一个独立的数据环境,需要通过抽取过程将数据从联机事务处理环境、外部数据源和脱机的数据存储介质导入到数据仓库中;在技术上,ETL主要涉及到关联、转换、增量、调度和监控等几个方面;数据仓库系统中数据不要求与联机事务处理系统中数据实时同步,所以ETL可以定时进行。但多个ETL的操作时间、顺序和成败对数据仓库中信息的有效性至关重要。
更具体的可以查看网络