当前位置:首页 » 编程软件 » 功率编程

功率编程

发布时间: 2022-09-11 19:48:34

㈠ matlab 怎么编程计算有功功率

matlab实现经典功率谱估计
fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数
matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。
1、直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:

clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法
plot(f,10*log10(Pxx));

㈡ 功率可编程直流电源的中科电XG 850/1500/1700分别表示什么它们的电压、电流和功率各是多少

功率可编程直流电源的中科电XG 850表示850瓦,1U半机架宽度直流电源,科电XG1500&XG1700系列是1500瓦及1700瓦输出1U全机架宽的直流电源。
XG 850 : 电压范围: 6V~600V; 电流范围: 1A~110A; 功率范围: 670W~850W
XG 1500 : 电压范围: 6V~600V; 电流范围: 2A~187A; 功率范围: 1500W~1560W
XG 1700 : 电压范围: 6V~600V; 电流范围: 2A~220A;功率范围: 1330W~1710W

㈢ 用Matlab求离散信号的能量与功率怎么编程

关于谱能量,有这样一种解释,你可以试着去算一算
信号可以分成能量信号与功率信号,非周期能量信号具有能量谱密度,是傅立叶变换的平方,功率信号具有功率谱密度,其与自相关函数是一对傅立叶变换对,等于傅立叶变换的平方/区间长度。不能混淆。能量信号是没有功率谱的。
胡广书老师的书上找到这么一段话,“随机信号在时间上是无限的,在样本上也是无穷多,因此随机信号的能量是无限的,它应是功率信号。功率信号不满足付里叶变换的绝对可积的条件,因此其付里叶变换是不存在的。如确定性的正弦函数的付里叶变换是不存在,只有引入了冲激函数才求得其付里叶变换。因此,对随机信号的频谱分析,不再简单的是频谱,而是功率谱。”

对于确定性信号而言,里面存在能量信号,是没有功率谱密度的,也存在功率信号,是有功率谱密度的。所以信号的频谱与是否是确定性信号没有必然联系。
以下论点来源于研学论坛:
频谱是信号的傅立叶变换。它描述了信号在各个频率上的分布大小。频谱的平方(当能量有限,平均功率为0时称为能量谱)描述了信号能量在各个频率上的分布大小。
计算过程中,都是通过样本数据的快速傅立叶变换来计算。但不同的是,信号的频谱是复数,包含幅频响应和相频响应,重复计算时的结果基本相同。 而随机信号的功率谱也可以对数据进行FFT,但必须计算模值的平方,因为功率谱是实数。而且换一组样本后,计算的结果略有不同,因为随机信号的样本取值不同。要得到真实的功率谱必须进行多次平均,次数越多越好。
根据parseval定理,信号傅氏变换模平方被定义为能量谱,即单位频率范围内包含的信号能量。自然,能量跟功率有一个时间平均的关系,所以,能量谱密度在时间上平均就得到了功率谱。


matlab实现经典功率谱估计

fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数
matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。
1、直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:

clear;
Fs=1000;%采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn));%矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs);%直接法
plot(f,10*log10(Pxx));



2、间接法:
间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:

clear;
Fs=1000;%采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased');%计算序列的自相关函数
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot(k,plot_Pxx);



3、改进的直接法:
对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
3.1、Bartlett法
Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:

clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(length(n));%矩形窗
noverlap=0;%数据无重叠
p=0.9;%置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
figure(1)
plot(k,plot_Pxx);
pause;
figure(2)
plot(k,[plot_Pxxplot_Pxx-plot_Pxxcplot_Pxx+plot_Pxxc]);



3.2、Welch法
Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。
Matlab代码示例:

clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(100);%矩形窗
window1=hamming(100);%海明窗
window2=blackman(100);%blackman窗
noverlap=20;%数据无重叠
range='half';%频率间隔为[0Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);
[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx);
plot_Pxx1=10*log10(Pxx1);
plot_Pxx2=10*log10(Pxx2);
figure(1)
plot(f,plot_Pxx);
pause;
figure(2)
plot(f,plot_Pxx1);
pause;
figure(3)
plot(f,plot_Pxx2);

㈣ 功率迭代算法的matlab编程

DSP正在成为一种几乎无处不在的技术,不仅应用在众多消费电子、汽车与电话产品中,而且也进入越来越先进的设备。

诸如无线基站、雷达信号处理、指纹识别以及软件无线电等应用都要求极高的处理能力。这些新类型的高性能DSP应用推动独立处理器的性能走高,而为了提升性能,硬件解决方案也在不断发展。

在90年代初,设计者面临的挑战是,如何采用多个处理器以汇聚更多的处理能力,从而满足他们的性能要求。但是在协调多个处理器的功能时,系统级设计变得极为困难,更不用说这种方法既昂贵又浪费资源。

㈤ 跪求,经过MAX197A/D转换、单片机AT89C51处理、1602编程显示, 显示电流、电压 功率、功率因数编程。

#include"reg51.h"
#include<stdio.h>
#include <intrins.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define LCD_Data P0
#define Busy 0x80 //用于检测LCD状态字中的Busy标识

sbit LCD_RS=P2^7;//定义引脚
sbit LCD_RW=P2^6;
sbit LCD_E=P2^5;

float volts,amps;

//5ms延时
void Delay5Ms(void)
{
unsigned int TempCyc = 5552;
while(TempCyc--);
}

//400ms延时
void Delay400Ms(void)
{
unsigned char TempCycA = 5;
unsigned int TempCycB;
while(TempCycA--)
{
TempCycB=7269;
while(TempCycB--);
};
}

//读状态
unsigned char ReadStatusLCD(void)
{
LCD_Data = 0xFF;
LCD_RS = 0;
LCD_RW = 1;
LCD_E = 0;
LCD_E = 0;
LCD_E = 1;
while (LCD_Data & Busy); //检测忙信号
return(LCD_Data);
}

//写数据
void WriteDataLCD(unsigned char WDLCD)
{
ReadStatusLCD(); //检测忙
LCD_Data = WDLCD;
LCD_RS = 1;
LCD_RW = 0;
LCD_E = 0; //若晶振速度太高可以在这后加小的延时
LCD_E = 0; //延时
LCD_E = 1;
}

//写指令
void WriteCommandLCD(unsigned char WCLCD,BuysC) //BuysC为0时忽略忙检测
{
if (BuysC) ReadStatusLCD(); //根据需要检测忙
LCD_Data = WCLCD;
LCD_RS = 0;
LCD_RW = 0;
LCD_E = 0;
LCD_E = 0;
LCD_E = 1;
}

//读数据
unsigned char ReadDataLCD(void)
{
LCD_RS = 1;
LCD_RW = 1;
LCD_E = 0;
LCD_E = 0;
LCD_E = 1;
return(LCD_Data);
}

void LCDInit(void) //LCM初始化
{
LCD_Data = 0;
WriteCommandLCD(0x38,0); //三次显示模式设置,不检测忙信号
Delay5Ms();
WriteCommandLCD(0x38,0);
Delay5Ms();
WriteCommandLCD(0x38,0);
Delay5Ms();

WriteCommandLCD(0x38,1); //显示模式设置,开始要求每次检测忙信号
WriteCommandLCD(0x08,1); //关闭显示
WriteCommandLCD(0x01,1); //显示清屏
WriteCommandLCD(0x06,1); // 显示光标移动设置
WriteCommandLCD(0x0C,1); // 显示开及光标设置
}

//按指定位置显示一个字符
void DisplayOneChar(unsigned char X, unsigned char Y, unsigned char DData)
{
Y &= 0x1;
X &= 0xF; //限制X不能大于15,Y不能大于1
if (Y) X |= 0x40; //当要显示第二行时地址码+0x40;
X |= 0x80; // 算出指令码
WriteCommandLCD(X, 0); //这里不检测忙信号,发送地址码
WriteDataLCD(DData);
}

//按指定位置显示一串字符
void DisplayListChar(unsigned char X, unsigned char Y, unsigned char code *DData)
{
unsigned char ListLength;

ListLength = 0;
Y &= 0x1;
X &= 0xF; //限制X不能大于15,Y不能大于1
while (DData[ListLength]>=0x20) //若到达字串尾则退出
{
if (X <= 0xF) //X坐标应小于0xF
{
DisplayOneChar(X, Y, DData[ListLength]); //显示单个字符
ListLength++;
X++;
}
}
}

把你的电压电流什么的放在数组里,然后用 DisplayListChar()这个命令显示出来,格式比如 DisplayListChar(0,0,dianya[])什么的,0行0列显示电压。把这一大段程序放在你的mian函数上面,在mian函数里写显示什么东西 。显示的东西放不下加个按键,按一下显示下一种数据

㈥ matlab如何编程以下计算 计算功率p.图1中蓝线是u,黑线是i,功率p的计算公式是图2. 现

首先你的i和u是离散的还是连续的?又有图像又有点的不太清楚你的意思。
如果是离散的就简单了直接用cunsum矩形求积分或者trapz梯形求积分
如果是连续的,你需要先建立函数
比如function i=myfun(t)
i=t.*t+t;
end
function u=myfun2(t)
u=2.*t-3;
end
funtion f=myfun3(t)
f=myfun(t).*myfun2(t);
end
将前面的函数分别保存
然后用quad或quadl积分,在命令窗口输入,计算
quadl(‘myfun3’,0,3)计算从0到3的积分

㈦ 用Matlab求离散信号的能量与功率怎么编程

关于谱能量,有这样一种解释,你可以试着去算一算信号可以分成能量信号与功率信号,非周期能量信号具有能量谱密度,是傅立叶变换的平方,功率信号具有功率谱密度,其与自相关函数是一对傅立叶变换对,等于傅立叶变换的平方/区间长度。不能混淆。用Matlab求离散信号的能量与功率怎么编程

㈧ matlab 怎么编程计算有功功率

matlab实现经典功率谱估计
fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数
matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。
1、直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:
clear;
Fs=1000;
%采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn));
%矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs);
%直接法
plot(f,10*log10(Pxx));

㈨ 编程中功率和顺时针哪个在前

功率在前。
编程(biānchéng)是编定程序的中文简称,就是让计算机代为解决某个问题,对某个计算体系规定一定的运算方式,使计算体系按照该计算方式运行,并最终得到相应结果的过程。

㈩ 什么是可编程输出功率

就是通过编程可以任意改变系统的输出功率

热点内容
18经验起床的服务器ip 发布:2024-11-01 12:30:15 浏览:39
这个锁屏密码是什么 发布:2024-11-01 12:24:51 浏览:91
相机存储卡排名 发布:2024-11-01 12:24:49 浏览:958
androidxml格式化 发布:2024-11-01 12:23:14 浏览:165
Vb6编译是错误不知道错误代码 发布:2024-11-01 12:16:23 浏览:159
局域网电脑访问服务器怎么提速 发布:2024-11-01 12:14:09 浏览:322
美创数据库 发布:2024-11-01 12:05:45 浏览:916
你改爱奇艺密码什么意思 发布:2024-11-01 12:04:48 浏览:408
矩阵分解python 发布:2024-11-01 11:58:23 浏览:367
如何查询微信支付密码修改记录 发布:2024-11-01 11:51:57 浏览:206