前端项目编译如何使用多线程
1. C++如何实现多线程
(1)Windows下使用CreateThread(_beginthread底层也是用这个API实现的)
(2)Linux下使用pthread_create
(3)C++0x中在tr1中增加了一个<thread>起多线程,不清楚最新版的gcc是不是已经增加了,VS2010还不支持
2. TC(c语言)中的多线程
可以不用。用C语言的计数器就好,不过比较麻烦。。。
如果用多线程,你首先需要了解线程的含义,另外编译的时候需要加参数,
编程的部分比较简单,头文件需要:
#include <process.h>
然后创建线程使用函数:
_beginthread()
销毁线程函数:
_endthread()
TC3.0也就是增加了个鼠标,修改了一些bug,更新了一下界面而已,编译器是和2.0一样的。
3. 为什么有时编译选项要改成多线程才能编译通过,而 单线程就不行呢
主要是libc(C函数)库不同,有时链接时会看到libcd.lib/libc.lib/libcmt.lib...这些东东,就是针对不同的线程环境所使用的。不过在VS2005之后,不再使用单线程库了,它只使用libc*mt.lib,也就是有很多老程序代码在VS2005下找不到LIBCD.lib的原因。
如果你在程序中使用了_beginthread之类的函数,那么就会链接到多线程的c函数库,单线程选项当然不能使用了。
而使用FORCE:MUTIPLE和这个没有多大关系,它可能在同时使用了单线程库和多线程库时起到了忽略多个重叠符号错误的作用。
4. 如何利用多线程,实现处理图像的同时,实时感应鼠标的移动,求c语言源代码!
你这个问题可是超过200分的啊,
这个往大了说是一个比较复杂的设计方案。
实际上C语言是没有多线程的概念的,但是我们可以通过Task来实现多任务。
简单的说,可以采取以下方案:
定义一个主Task,将其置为常驻Task,用以进行Task调度和Task的启动/终了和交互的管理。
定义一个Task优先级列表,用优先级来作为Task调度和管理的基础。
定义一个共享域,和相应的事件分发/广播/传递的管理机制,由主Task来实现各Task间的事件传递。
定义3个List,实现Active,Ready,Dead的Task的管理和调度。
定义各普通Task,包含Task基本信息:Task的栈指针,Task情报,Task存储空间大小,Task的优先级,Task的事件列表(定义可以接收/发送的事件,以及可以排队的事件的个数),以及如果需要的话可以定义Task的从属(父子)关系。
另外还有几个注意点:
1. 通过C的临界域(critical section)结合PV操作来实现某些Task的原子性处理要求。
2. 通过Signal来实现中断和再开
3. 如果需要处理中断和再开的话,一定要注意现场保护
4. 同优先级的Task可以通过时间片轮循的方式进行多任务实现
暂时就想到这么多,有不明白的通过消息进一步交流吧:)
5. Thread子类是如何实现多线程机制的
来自:开发者在线
java多线程程序设计详细解析
一、理解多线程
多线程是这样一种机制,它允许在程序中并发执行多个指令流,每个指令流都称为一个线程,彼此间互相独立。
线程又称为轻量级进程,它和进程一样拥有独立的执行控制,由操作系统负责调度,区别在于线程没有独立的存储空间,而是和所属进程中的其它线程共享一个存储空间,这使得线程间的通信远较进程简单。
多个线程的执行是并发的,也就是在逻辑上“同时”,而不管是否是物理上的“同时”。如果系统只有一个CPU,那么真正的“同时”是不可能的,但是由于CPU的速度非常快,用户感觉不到其中的区别,因此我们也不用关心它,只需要设想各个线程是同时执行即可。
多线程和传统的单线程在程序设计上最大的区别在于,由于各个线程的控制流彼此独立,使得各个线程之间的代码是乱序执行的,由此带来的线程调度,同步等问题,将在以后探讨。
二:在Java中实现多线程
我们不妨设想,为了创建一个新的线程,我们需要做些什么?很显然,我们必须指明这个线程所要执行的代码,而这就是在Java中实现多线程我们所需要做的一切!
真是神奇!Java是如何做到这一点的?通过类!作为一个完全面向对象的语言,Java提供了类java.lang.Thread来方便多线程编程,这个类提供了大量的方法来方便我们控制自己的各个线程,我们以后的讨论都将围绕这个类进行。
那么如何提供给 Java 我们要线程执行的代码呢?让我们来看一看 Thread 类。Thread 类最重要的方法是run(),它为Thread类的方法start()所调用,提供我们的线程所要执行的代码。为了指定我们自己的代码,只需要覆盖它!
方法一:继承 Thread 类,覆盖方法 run(),我们在创建的 Thread 类的子类中重写 run() ,加入线程所要执行的代码即可。下面是一个例子:
public class MyThread extends Thread
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println
("创建线程 " + number);
}
public void run() {
while(true) {
System.out.println
("线程 " + number + ":计数 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0;
i 〈 5; i++) new MyThread(i+1).start();
}
}
这种方法简单明了,符合大家的习惯,但是,它也有一个很大的缺点,那就是如果我们的类已经从一个类继承(如小程序必须继承自 Applet 类),则无法再继承 Thread 类,这时如果我们又不想建立一个新的类,应该怎么办呢?
我们不妨来探索一种新的方法:我们不创建Thread类的子类,而是直接使用它,那么我们只能将我们的方法作为参数传递给 Thread 类的实例,有点类似回调函数。但是 Java 没有指针,我们只能传递一个包含这个方法的类的实例。
那么如何限制这个类必须包含这一方法呢?当然是使用接口!(虽然抽象类也可满足,但是需要继承,而我们之所以要采用这种新方法,不就是为了避免继承带来的限制吗?)
Java 提供了接口 java.lang.Runnable 来支持这种方法。
方法二:实现 Runnable 接口
Runnable接口只有一个方法run(),我们声明自己的类实现Runnable接口并提供这一方法,将我们的线程代码写入其中,就完成了这一部分的任务。但是Runnable接口并没有任何对线程的支持,我们还必须创建Thread类的实例,这一点通过Thread类的构造函数public Thread(Runnable target);来实现。下面是一个例子:
public class MyThread implements Runnable
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println("创建线程 " + number);
}
public void run()
{
while(true)
{
System.out.println
("线程 " + number + ":计数 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0; i 〈 5;
i++) new Thread(new MyThread(i+1)).start();
}
}
严格地说,创建Thread子类的实例也是可行的,但是必须注意的是,该子类必须没有覆盖 Thread 类的 run 方法,否则该线程执行的将是子类的 run 方法,而不是我们用以实现Runnable 接口的类的 run 方法,对此大家不妨试验一下。
使用 Runnable 接口来实现多线程使得我们能够在一个类中包容所有的代码,有利于封装,它的缺点在于,我们只能使用一套代码,若想创建多个线程并使各个线程执行不同的代码,则仍必须额外创建类,如果这样的话,在大多数情况下也许还不如直接用多个类分别继承 Thread 来得紧凑。
综上所述,两种方法各有千秋,大家可以灵活运用。
下面让我们一起来研究一下多线程使用中的一些问题。
三、线程的四种状态
1. 新状态:线程已被创建但尚未执行(start() 尚未被调用)。
2. 可执行状态:线程可以执行,虽然不一定正在执行。CPU 时间随时可能被分配给该线程,从而使得它执行。
3. 死亡状态:正常情况下 run() 返回使得线程死亡。调用 stop()或 destroy() 亦有同样效果,但是不被推荐,前者会产生异常,后者是强制终止,不会释放锁。
4. 阻塞状态:线程不会被分配 CPU 时间,无法执行。
四、线程的优先级
线程的优先级代表该线程的重要程度,当有多个线程同时处于可执行状态并等待获得 CPU 时间时,线程调度系统根据各个线程的优先级来决定给谁分配 CPU 时间,优先级高的线程有更大的机会获得 CPU 时间,优先级低的线程也不是没有机会,只是机会要小一些罢了。
你可以调用 Thread 类的方法 getPriority() 和 setPriority()来存取线程的优先级,线程的优先级界于1(MIN_PRIORITY)和10(MAX_PRIORITY)之间,缺省是5(NORM_PRIORITY)。
五、线程的同步
由于同一进程的多个线程共享同一片存储空间,在带来方便的同时,也带来了访问冲突这个严重的问题。Java语言提供了专门机制以解决这种冲突,有效避免了同一个数据对象被多个线程同时访问。
由于我们可以通过 private 关键字来保证数据对象只能被方法访问,所以我们只需针对方法提出一套机制,这套机制就是 synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。
1. synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如:
public synchronized void accessVal(int newVal);
synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行状态。
这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized)。
在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成员变量的访问。
synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为 synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供了更好的解决办法,那就是 synchronized 块。
2. synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下:
synchronized(syncObject)
{
//允许访问控制的代码
}
synchronized 块是这样一个代码块,其中的代码必须获得对象 syncObject (如前所述,可以是类实例或类)的锁方能执行,具体机制同前所述。由于可以针对任意代码块,且可任意指定上锁的对象,故灵活性较高。
六、线程的阻塞
为了解决对共享存储区的访问冲突,Java 引入了同步机制,现在让我们来考察多个线程对共享资源的访问,显然同步机制已经不够了,因为在任意时刻所要求的资源不一定已经准备好了被访问,反过来,同一时刻准备好了的资源也可能不止一个。为了解决这种情况下的访问控制问题,Java 引入了对阻塞机制的支持。
阻塞指的是暂停一个线程的执行以等待某个条件发生(如某资源就绪),学过操作系统的同学对它一定已经很熟悉了。Java 提供了大量方法来支持阻塞,下面让我们逐一分析。
1. sleep() 方法:sleep() 允许 指定以毫秒为单位的一段时间作为参数,它使得线程在指定的时间内进入阻塞状态,不能得到CPU 时间,指定的时间一过,线程重新进入可执行状态。典型地,sleep() 被用在等待某个资源就绪的情形:测试发现条件不满足后,让线程阻塞一段时间后重新测试,直到条件满足为止。
2. suspend() 和 resume() 方法:两个方法配套使用,suspend()使得线程进入阻塞状态,并且不会自动恢复,必须其对应的resume() 被调用,才能使得线程重新进入可执行状态。典型地,suspend() 和 resume() 被用在等待另一个线程产生的结果的情形:测试发现结果还没有产生后,让线程阻塞,另一个线程产生了结果后,调用 resume() 使其恢复。
3. yield() 方法:yield() 使得线程放弃当前分得的 CPU 时间,但是不使线程阻塞,即线程仍处于可执行状态,随时可能再次分得 CPU 时间。调用 yield() 的效果等价于调度程序认为该线程已执行了足够的时间从而转到另一个线程。
4. wait() 和 notify() 方法:两个方法配套使用,wait() 使得线程进入阻塞状态,它有两种形式,一种允许 指定以毫秒为单位的一段时间作为参数,另一种没有参数,前者当对应的 notify() 被调用或者超出指定时间时线程重新进入可执行状态,后者则必须对应的 notify() 被调用。
初看起来它们与 suspend() 和 resume() 方法对没有什么分别,但是事实上它们是截然不同的。区别的核心在于,前面叙述的所有方法,阻塞时都不会释放占用的锁(如果占用了的话),而这一对方法则相反。
上述的核心区别导致了一系列的细节上的区别。
首先,前面叙述的所有方法都隶属于 Thread 类,但是这一对却直接隶属于 Object 类,也就是说,所有对象都拥有这一对方法。初看起来这十分不可思议,但是实际上却是很自然的,因为这一对方法阻塞时要释放占用的锁,而锁是任何对象都具有的,调用任意对象的 wait() 方法导致线程阻塞,并且该对象上的锁被释放。
而调用 任意对象的notify()方法则导致因调用该对象的 wait() 方法而阻塞的线程中随机选择的一个解除阻塞(但要等到获得锁后才真正可执行)。
其次,前面叙述的所有方法都可在任何位置调用,但是这一对方法却必须在 synchronized 方法或块中调用,理由也很简单,只有在synchronized 方法或块中当前线程才占有锁,才有锁可以释放。
同样的道理,调用这一对方法的对象上的锁必须为当前线程所拥有,这样才有锁可以释放。因此,这一对方法调用必须放置在这样的 synchronized 方法或块中,该方法或块的上锁对象就是调用这一对方法的对象。若不满足这一条件,则程序虽然仍能编译,但在运行时会出现IllegalMonitorStateException 异常。
wait() 和 notify() 方法的上述特性决定了它们经常和synchronized 方法或块一起使用,将它们和操作系统的进程间通信机制作一个比较就会发现它们的相似性:synchronized方法或块提供了类似于操作系统原语的功能,它们的执行不会受到多线程机制的干扰,而这一对方法则相当于 block 和wakeup 原语(这一对方法均声明为 synchronized)。
它们的结合使得我们可以实现操作系统上一系列精妙的进程间通信的算法(如信号量算法),并用于解决各种复杂的线程间通信问题。关于 wait() 和 notify() 方法最后再说明两点:
第一:调用 notify() 方法导致解除阻塞的线程是从因调用该对象的 wait() 方法而阻塞的线程中随机选取的,我们无法预料哪一个线程将会被选择,所以编程时要特别小心,避免因这种不确定性而产生问题。
第二:除了 notify(),还有一个方法 notifyAll() 也可起到类似作用,唯一的区别在于,调用 notifyAll() 方法将把因调用该对象的 wait() 方法而阻塞的所有线程一次性全部解除阻塞。当然,只有获得锁的那一个线程才能进入可执行状态。
谈到阻塞,就不能不谈一谈死锁,略一分析就能发现,suspend() 方法和不指定超时期限的 wait() 方法的调用都可能产生死锁。遗憾的是,Java 并不在语言级别上支持死锁的避免,我们在编程中必须小心地避免死锁。
以上我们对 Java 中实现线程阻塞的各种方法作了一番分析,我们重点分析了 wait() 和 notify()方法,因为它们的功能最强大,使用也最灵活,但是这也导致了它们的效率较低,较容易出错。实际使用中我们应该灵活使用各种方法,以便更好地达到我们的目的。
七、守护线程
守护线程是一类特殊的线程,它和普通线程的区别在于它并不是应用程序的核心部分,当一个应用程序的所有非守护线程终止运行时,即使仍然有守护线程在运行,应用程序也将终止,反之,只要有一个非守护线程在运行,应用程序就不会终止。守护线程一般被用于在后台为其它线程提供服务。
可以通过调用方法 isDaemon() 来判断一个线程是否是守护线程,也可以调用方法 setDaemon() 来将一个线程设为守护线程。
八、线程组
线程组是一个 Java 特有的概念,在 Java 中,线程组是类ThreadGroup 的对象,每个线程都隶属于唯一一个线程组,这个线程组在线程创建时指定并在线程的整个生命期内都不能更改。
你可以通过调用包含 ThreadGroup 类型参数的 Thread 类构造函数来指定线程属的线程组,若没有指定,则线程缺省地隶属于名为 system 的系统线程组。
在 Java 中,除了预建的系统线程组外,所有线程组都必须显式创建。在 Java 中,除系统线程组外的每个线程组又隶属于另一个线程组,你可以在创建线程组时指定其所隶属的线程组,若没有指定,则缺省地隶属于系统线程组。这样,所有线程组组成了一棵以系统线程组为根的树。
Java 允许我们对一个线程组中的所有线程同时进行操作,比如我们可以通过调用线程组的相应方法来设置其中所有线程的优先级,也可以启动或阻塞其中的所有线程。
Java 的线程组机制的另一个重要作用是线程安全。线程组机制允许我们通过分组来区分有不同安全特性的线程,对不同组的线程进行不同的处理,还可以通过线程组的分层结构来支持不对等安全措施的采用。
Java 的 ThreadGroup 类提供了大量的方法来方便我们对线程组树中的每一个线程组以及线程组中的每一个线程进行操作。
九、总结
在本文中,我们讲述了 Java 多线程编程的方方面面,包括创建线程,以及对多个线程进行调度、管理。我们深刻认识到了多线程编程的复杂性,以及线程切换开销带来的多线程程序的低效性,这也促使我们认真地思考一个问题:我们是否需要多线程?何时需要多线程?
多线程的核心在于多个代码块并发执行,本质特点在于各代码块之间的代码是乱序执行的。我们的程序是否需要多线程,就是要看这是否也是它的内在特点。
假如我们的程序根本不要求多个代码块并发执行,那自然不需要使用多线程;假如我们的程序虽然要求多个代码块并发执行,但是却不要求乱序,则我们完全可以用一个循环来简单高效地实现,也不需要使用多线程;只有当它完全符合多线程的特点时,多线程机制对线程间通信和线程管理的强大支持才能有用武之地,这时使用多线程才是值得的。
来自:开发者在线
6. qthread如何启动多个线程
1. 引言
多线程对于需要处理耗时任务的应用很有用,一方面响应用户操作、更新界面显示,另一方面在“后台”进行耗时操作,比如大量运算、复制大文件、网络传输等。
使用Qt框架开发应用程序时,使用QThread类可以方便快捷地创建管理多线程。而多线程之间的通信也可使用Qt特有的“信号-槽”机制实现。
下面的说明以文件复制为例。主线程负责提供交互界面,显示复制进度等;子线程负责复制文件。最后附有可以执行的代码。
2. QThread使用方法1——重写run()函数
第一种使用方法是自己写一个类继承QThread,并重写其run()函数。
大家知道,C/C++程序都是从main()函数开始执行的。main()函数其实就是主进程的入口,main()函数退出了,则主进程退出,整个进程也就结束了。
而对于使用Qthread创建的进程而言,run()函数则是新线程的入口,run()函数退出,意味着线程的终止。复制文件的功能,就是在run()函数中执行的。
下面举个文件复制的例子。自定义一个类,继承自Qthread
CopyFileThread: public QThread
{
Q_OBJECTpublic:
CopyFileThread(QObject * parent = 0);protected: void run(); // 新线程入口// 省略掉一些内容}
在对应的cpp文件中,定义run()
void CopyFileThread::run(){ // 新线程入口
// 初始化和操作放在这里}
将这个类写好之后,在主线程的代码中生成一个CopyFileThread的实例,例如在mainwindow.cpp中写:
// mainwindow.h中CopyFileThread * m_cpyThread;// mainwindow.cpp中m_cpyThread = new CopyFileThread;
在要开始复制的时候,比如按下“复制”按钮后,让这个线程开始执行:
m_cpyThread->start();
注意,使用start()函数来启动子线程,而不是run()。start()会自动调用run()。
线程开始执行后,就进入run()函数,执行复制文件的操作。而此时,主线程的显示和操作都不受影响。
如果需要进行对复制过程中可能发生的事件进行处理,例如界面显示复制进度、出错返回等等,应该从CopyFileThread中发出信号(signal),并事先连接到mainwindow的槽,由这些槽函数来处理事件。
3. QThread使用方法2——moveToThread()
如果不想每执行一种任务就自定义一个新线程,那么可以自定义用于完成任务的类,并让它们继承自QObject。例如,自定义一个FileCopier类,用于复制文件。
class FileCopier : public QObject
{
Q_OBJECTpublic: explicit FileCopier(QObject *parent = 0);public slots: void startCopying(); void cancelCopying();
}
注意这里我们定义了两个槽函数,分别用于复制的开始和取消。
这个类本身的实例化是在主线程中进行的,例如:
// mainwindow.h中private:
FileCopier* m_copier;// mainwindow.cpp中,初始化时
m_copier = new FileCopier;
此时m_copier还是属于主线程的。要将其移动到子线程处理,需要首先声明并实例化一个QThread:
// mainwindow.h中signals: void startCopyRsquested();private:
QThread * m_childThread; // m_copier将被移动到此线程执行// mainwindow.cpp中,初始化时
m_childThread = new QThread; // 子线程,本身不负责复制
然后使用moveToThread()将m_copier移动到新线程。注意moveToThread()是QObject的公有函数,因此用于复制文件的类FileCopier必须继承自QObject。移动之后启动子线程。此时复制还没有开始。
m_copier->moveToThread(m_childThread); // 将实例移动到新的线程,实现多线程运行
m_childThread->start(); // 启动子线程
注意一定要记得启动子线程,否则线程没有运行,m_copier的功能也无法执行。
要开始复制,需要使用信号-槽机制,触发FileCopier的槽函数实现。因此要事先定义信号并连接:
// mainwindow.h中signals: void startCopyRsquested();// mainwindow.cpp中,初始化时// 使用信号-槽机制,发出开始指令
connect(this, SIGNAL(startCopyRsquested()), m_copier, SLOT(startCopying()));
当按下“复制”按钮后,发出信号。
emit startCopyRsquested(); // 发送信号
m_copier在另一个线程接收到信号后,触发槽函数,开始复制文件。
4.常见问题
4.1. 子线程中能不能进行UI操作?
Qt中的UI操作,比如QMainWindow、QWidget之类的创建、操作,只能位于主线程!
这个限制意味着你不能在新的线程中使用QDialog、QMessageBox等。比如在新线程中复制文件出错,想弹出对话框警告?可以,但是必须将错误信息传到主线程,由主线程实现对话框警告。
因此一般思路是,主线程负责提供界面,子线程负责无UI的单一任务,通过“信号-槽”与主线程交互。
4.2. QThread中的哪些代码属于子线程?
QThread,以及继承QThread的类(以下统称QThread),他们的实例都属于新线程吗?答案是:不。
需要注意的是,QThread本身的实例是属于创建该实例的线程的。比如在主线程中创建一个QThread,那么这个QThread实例本身属于主线程。当然,QThread会开辟一个新线程(入口是run()),但是QThread本身并不属于这个新线程。也就是说,QThread本身的成员都不属于新线程,而且在QThread构造函数里通过new得到的实例,也不属于新线程。这一特性意味着,如果要实现多线程操作,那么你希望属于新线程的实例、变量等,应该在run()中进行初始化、实例化等操作。本文给出的例子就是这样操作的。
如果你的多线程程序运行起来,会出现关于thread的报警,思考一下,各种变量、实例是不是放对了位置,是不是真的位于新的线程里。
4.3. 怎么查看是不是真的实现了多线程?
可以打印出当前线程。对于所有继承自QObject的类,例如QMainwindow、QThread,以及自定义的各种类,可以调用QObject::thread()查看当前线程,这个函数返回的是一个QThread的指针。例如用qDebug()打印:
在mainwindow.cpp的某个函数里、QThread的run()函数里、自定义类的某个函数里,写上:
qDebug() << "Current thread:" << thread();
对比不同位置打印的指针,就可以知道它们是不是位于同一个线程了。
5.范例
范例实现了多线程复制文本文件。
提供的范例文件可用QtCreator编译运行。界面如下(不同的操作系统略有不同):
范例中实现了本文介绍的两种方法,同时也给出了单线程复制对比。打钩选择不同的复制方法。可以发现,在使用多线程的时候,界面不会假死,第二根进度条的动画是持续的;而使用单线程复制的时候,“取消”按钮按不动,界面假死,而且第二根进度条的动画也停止了。
由于范例处理的文件很小,为了让复制过程持续较长时间以便使得现象明显,复制文件的时候,每复制一行加入了等待。
范例代码:
https://github.com/Xia-Weiwen/CopyFile
7. QT如何进行线程编译
在Qt中使用多线程,目前就我使用过的有两种,一是子类化QThread,重写run函数,在run函数里实现自己的代码,这一部分代码通常是比较耗时,或者干脆直接阻塞的。比如一个while循环,设置一个标志,判断循环结束。
这样的例子在网上有很多,就不写了。
这样写的话,会有一些东西需要了解。
子类化QThread的方法,只有run函数里面的内容是执行在子线程里的,其他的部分,比如槽函数什么的还是在主线程里执行(假设是在主线程开启的该子线程)。
还有一种方法,是子类化QObject,新建一个线程,然后使用MoveToThread把这个类的对象移到新建的线程中,这种做法使得它所有的槽函数都是执行在新开辟的线程里面。
如果直接(QObject对象).abc()的话,这个成员函数是在主进程内执行,可能会出现"QObject::killTimer: timers
cannot be stopped from another thread"的运行错误。
使用第二种方法的话,貌似会遇到这样的问题:如果在一个槽函数中把子线程阻塞,其他的槽函数无法接受来自主线程
8. 如何使用java多线程处理http请求,求思路!!
云计算也分很多种类型,也需要看哪种类型,目前我只能从你之前的介绍来猜测你的需求是计算密集型。那么这种一般来说,前端界面提供三个功能(23也可以合并):1、提交请求:就是把请求保存在服务器,然后等着后台批处理系统去搞定它;2、查询处理状态:查询下之前提交的某请求处理得怎么样了,比如总共处理多久了,处理了百分之多少;3、查询处理结果:如果处理完毕了,显示下处理的结果。然后后端专门有个批处理系统去负责从数据库中把前端接受的请求拿出来,然后找工作线程去处理,并跟踪进度,回写结果。比如前端提交请求是计算PI到小数点后十亿位,那么这个前端应用只需要把客户的请求直接写入数据库,就可以返回消息:“请求提交成功。”而批处理系统定期查询数据库,并从数据库中取出请求,然后根据计算规模启动大量线程甚至其它集群,分配任务,然后......不过,总的来说,你们老大直接把这样的命题交给你,好像有点那啥。。。