当前位置:首页 » 编程软件 » gcc编译参数提高编译速度

gcc编译参数提高编译速度

发布时间: 2022-08-18 20:49:37

1. 什么工具可以提升gcc编译效率

这个一般的工具应该还是做不到的,但是工具栏上应该还是有制动编译的功效,你看一看。

2. MinGW(GCC)编译时的优化参数是什么

release版本通常使用-O2,debug使用-O0,参考Man手册和GNU说明文档

3. 求助,gcc的编译过程太慢

RH,SUSE系列可以用rpm包安装
Debian系列可以apt安装
没用过多个版本gcc并存,不过gcc4重写了前端,应该加快速度的!

4. linux下gcc编译介绍

Linux系统下的Gcc(GNU C Compiler)是GNU推出的功能强大、性能优越的多平台编译器,是GNU的代表作品之一。gcc是可以在多种硬体平台上编译出可执行程序的超级编译器,其执行效率与一般的编译器相比平均效率要高20%~30%。
Gcc编译器能将C、C++语言源程序、汇程式化序和目标程序编译、连接成可执行文件,如果没有给出可执行文件的名字,gcc将生成一个名为a.out的文件。在Linux系统中,可执行文件没有统一的后缀,系统从文件的属性来区分可执行文件和不可执行文件。而gcc则通过后缀来区别输入文件的类别,下面我们来介绍gcc所遵循的部分约定规则。
.c为后缀的文件,C语言源代码文件;
.a为后缀的文件,是由目标文件构成的档案库文件;
.C,.cc或.cxx 为后缀的文件,是C++源代码文件;
.h为后缀的文件,是程序所包含的头文件;
.i 为后缀的文件,是已经预处理过的C源代码文件;
.ii为后缀的文件,是已经预处理过的C++源代码文件;
.m为后缀的文件,是Objective-C源代码文件;
.o为后缀的文件,是编译后的目标文件;
.s为后缀的文件,是汇编语言源代码文件;
.S为后缀的文件,是经过预编译的汇编语言源代码文件。
Gcc的执行过程
虽然我们称Gcc是C语言的编译器,但使用gcc由C语言源代码文件生成可执行文件的过程不仅仅是编译的过程,而是要经历四个相互关联的步骤∶预处理(也称预编译,Preprocessing)、编译(Compilation)、汇编(Assembly)和连接(Linking)。
命令gcc首先调用cpp进行预处理,在预处理过程中,对源代码文件中的文件包含(include)、预编译语句(如宏定义define等)进行分析。接着调用cc1进行编译,这个阶段根据输入文件生成以.o为后缀的目标文件。汇编过程是针对汇编语言的步骤,调用as进行工作,一般来讲,.S为后缀的汇编语言源代码文件和汇编、.s为后缀的汇编语言文件经过预编译和汇编之后都生成以.o为后缀的目标文件。当所有的目标文件都生成之后,gcc就调用ld来完成最后的关键性工作,这个阶段就是连接。在连接阶段,所有的目标文件被安排在可执行程序中的恰当的位置,同时,该程序所调用到的库函数也从各自所在的档案库中连到合适的地方。

Gcc的基本用法和选项
在使用Gcc编译器的时候,我们必须给出一系列必要的调用参数和文件名称。Gcc编译器的调用参数大约有100多个,其中多数参数我们可能根本就用不到,这里只介绍其中最基本、最常用的参数。
Gcc最基本的用法是∶gcc [options] [filenames]
其中options就是编译器所需要的参数,filenames给出相关的文件名称。
-c,只编译,不连接成为可执行文件,编译器只是由输入的.c等源代码文件生成.o为后缀的目标文件,通常用于编译不包含主程序的子程序文件。
-o output_filename,确定输出文件的名称为output_filename,同时这个名称不能和源文件同名。如果不给出这个选项,gcc就给出预设的可执行文件a.out。
-g,产生符号调试工具(GNU的gdb)所必要的符号资讯,要想对源代码进行调试,我们就必须加入这个选项。
-O,对程序进行优化编译、连接,采用这个选项,整个源代码会在编译、连接过程中进行优化处理,这样产生的可执行文件的执行效率可以提高,但是,编译、连接的速度就相应地要慢一些。
-O2,比-O更好的优化编译、连接,当然整个编译、连接过程会更慢。
-Idirname,将dirname所指出的目录加入到程序头文件目录列表中,是在预编译过程中使用的参数。C程序中的头文件包含两种情况∶
A)#include
B)#include “myinc.h”
其中,A类使用尖括号(< >),B类使用双引号(“ ”)。对于A类,预处理程序cpp在系统预设包含文件目录(如/usr/include)中搜寻相应的文件,而对于B类,cpp在当前目录中搜寻头文件,这个选项的作用是告诉cpp,如果在当前目录中没有找到需要的文件,就到指定的dirname目录中去寻找。在程序设计中,如果我们需要的这种包含文件分别分布在不同的目录中,就需要逐个使用-I选项给出搜索路径。
-Ldirname,将dirname所指出的目录加入到程序函数档案库文件的目录列表中,是在连接过程中使用的参数。在预设状态下,连接程序ld在系统的预设路径中(如/usr/lib)寻找所需要的档案库文件,这个选项告诉连接程序,首先到-L指定的目录中去寻找,然后到系统预设路径中寻找,如果函数库存放在多个目录下,就需要依次使用这个选项,给出相应的存放目录。
-lname,在连接时,装载名字为“libname.a”的函数库,该函数库位于系统预设的目录或者由-L选项确定的目录下。例如,-lm表示连接名为“libm.a”的数学函数库。
上面我们简要介绍了gcc编译器最常用的功能和主要参数选项,更为详尽的资料可以参看Linux系统的联机帮助。
假定我们有一个程序名为test.c的C语言源代码文件,要生成一个可执行文件,最简单的办法就是∶
gcc test.c
这时,预编译、编译连接一次完成,生成一个系统预设的名为a.out的可执行文件,对于稍为复杂的情况,比如有多个源代码文件、需要连接档案库或者有其他比较特别的要求,就要给定适当的调用选项参数。再看一个简单的例子。
整个源代码程序由两个文件testmain.c 和testsub.c组成,程序中使用了系统提供的数学库,同时希望给出的可执行文件为test,这时的编译命令可以是∶
gcc testmain.c testsub.c □lm □o test
其中,-lm表示连接系统的数学库libm.a。

Gcc的错误类型及对策
Gcc编译器如果发现源程序中有错误,就无法继续进行,也无法生成最终的可执行文件。为了便于修改,gcc给出错误资讯,我们必须对这些错误资讯逐个进行分析、处理,并修改相应的语言,才能保证源代码的正确编译连接。gcc给出的错误资讯一般可以分为四大类,下面我们分别讨论其产生的原因和对策。

第一类∶C语法错误
错误资讯∶文件source.c中第n行有语法错误(syntex errror)。这种类型的错误,一般都是C语言的语法错误,应该仔细检查源代码文件中第n行及该行之前的程序,有时也需要对该文件所包含的头文件进行检查。有些情况下,一个很简单的语法错误,gcc会给出一大堆错误,我们最主要的是要保持清醒的头脑,不要被其吓倒,必要的时候再参考一下C语言的基本教材。
第二类∶头文件错误
错误资讯∶找不到头文件head.h(Can not find include file head.h)。这类错误是源代码文件中的包含头文件有问题,可能的原因有头文件名错误、指定的头文件所在目录名错误等,也可能是错误地使用了双引号和尖括号。

第三类∶档案库错误
错误资讯∶连接程序找不到所需的函数库,例如∶
ld: -lm: No such file or directory
这类错误是与目标文件相连接的函数库有错误,可能的原因是函数库名错误、指定的函数库所在目录名称错误等,检查的方法是使用find命令在可能的目录中寻找相应的函数库名,确定档案库及目录的名称并修改程序中及编译选项中的名称。
第四类∶未定义符号
错误资讯∶有未定义的符号(Undefined symbol)。这类错误是在连接过程中出现的,可能有两种原因∶一是使用者自己定义的函数或者全局变量所在源代码文件,没有被编译、连接,或者干脆还没有定义,这需要使用者根据实际情况修改源程序,给出全局变量或者函数的定义体;二是未定义的符号是一个标准的库函数,在源程序中使用了该库函数,而连接过程中还没有给定相应的函数库的名称,或者是该档案库的目录名称有问题,这时需要使用档案库维护命令ar检查我们需要的库函数到底位于哪一个函数库中,确定之后,修改gcc连接选项中的-l和-L项。
排除编译、连接过程中的错误,应该说这只是程序设计中最简单、最基本的一个步骤,可以说只是开了个头。这个过程中的错误,只是我们在使用C语言描述一个算法中所产生的错误,是比较容易排除的。我们写一个程序,到编译、连接通过为止,应该说刚刚开始,程序在运行过程中所出现的问题,是算法设计有问题,说得更玄点是对问题的认识和理解不够,还需要更加深入地测试、调试和修改。一个程序,稍为复杂的程序,往往要经过多次的编译、连接和测试、修改。下面我们学习的程序维护、调试工具和版本维护就是在程序调试、测试过程中使用的,用来解决调测阶段所出现的问题。窗体顶端
窗体底端

5. Gcc 命令怎么用

Gcc最基本的用法是∶gcc [options] [filenames] 其中options就是编译器所需要的参数,filenames给出相关的文件名称。 -c,只编译,不连接成为可执行文件,编译器只是由输入的.c等源代码文件生成.o为后缀的目标文件,通常用于编译不包含主程序的子程序文件。 -o output_filename,确定输出文件的名称为output_filename,同时这个名称不能和源文件同名。如果不给出这个选项,gcc就给出预设的可执行文件a.out。 -g,产生符号调试工具(GNU的gdb)所必要的符号资讯,要想对源代码进行调试,我们就必须加入这个选项。 -O,对程序进行优化编译、连接,采用这个选项,整个源代码会在编译、连接过程中进行优化处理,这样产生的可执行文件的执行效率可以提高,但是,编译、连接的速度就相应地要慢一些。 -O2,比-O更好的优化编译、连接,当然整个编译、连接过程会更慢。 -Idirname,将dirname所指出的目录加入到程序头文件目录列表中,是在预编译过程中使用的参数。找到一个学习linux的好方法,可多看看《linux就该这么学》一书。

6. 如何加快linux android 的编译速度

项目越来越大,每次需要重新编译整个项目都是一件很浪费时间的事情。Research了一下,找到以下可以帮助提高速度的方法,总结一下。
1. 使用tmpfs来代替部分IO读写
2.ccache,可以将ccache的缓存文件设置在tmpfs上,但是这样的话,每次开机后,ccache的缓存文件会丢失
3.distcc,多机器编译
4.将屏幕输出打印到内存文件或者/dev/null中,避免终端设备(慢速设备)拖慢速度。

tmpfs
有人说在Windows下用了RAMDisk把一个项目编译时间从4.5小时减少到了5分钟,也许这个数字是有点夸张了,不过粗想想,把文件放到内存上做编译应该是比在磁盘上快多了吧,尤其如果编译器需要生成很多临时文件的话。
这个做法的实现成本最低,在Linux中,直接mount一个tmpfs就可以了。而且对所编译的工程没有任何要求,也不用改动编译环境。
mount -t tmpfs tmpfs ~/build -o size=1G
用2.6.32.2的Linux Kernel来测试一下编译速度:
用物理磁盘:40分16秒
用tmpfs:39分56秒
呃……没什么变化。看来编译慢很大程度上瓶颈并不在IO上面。但对于一个实际项目来说,编译过程中可能还会有打包等IO密集的操作,所以只要可能,用tmpfs是有益无害的。当然对于大项目来说,你需要有足够的内存才能负担得起这个tmpfs的开销。
make -j
既然IO不是瓶颈,那CPU就应该是一个影响编译速度的重要因素了。
用make -j带一个参数,可以把项目在进行并行编译,比如在一台双核的机器上,完全可以用make -j4,让make最多允许4个编译命令同时执行,这样可以更有效的利用CPU资源。
还是用Kernel来测试:
用make: 40分16秒
用make -j4:23分16秒
用make -j8:22分59秒
由此看来,在多核CPU上,适当的进行并行编译还是可以明显提高编译速度的。但并行的任务不宜太多,一般是以CPU的核心数目的两倍为宜。
不过这个方案不是完全没有cost的,如果项目的Makefile不规范,没有正确的设置好依赖关系,并行编译的结果就是编译不能正常进行。如果依赖关系设置过于保守,则可能本身编译的可并行度就下降了,也不能取得最佳的效果。
ccache
ccache工作原理:
ccache也是一个编译器驱动器。第一趟编译时ccache缓存了GCC的“-E”输出、编译选项以及.o文件到$HOME/.ccache。第二次编译时尽量利用缓存,必要时更新缓存。所以即使"make clean; make"也能从中获得好处。ccache是经过仔细编写的,确保了与直接使用GCC获得完全相同的输出。

ccache用于把编译的中间结果进行缓存,以便在再次编译的时候可以节省时间。这对于玩Kernel来说实在是再好不过了,因为经常需要修改一些Kernel的代码,然后再重新编译,而这两次编译大部分东西可能都没有发生变化。对于平时开发项目来说,也是一样。为什么不是直接用make所支持的增量编译呢?还是因为现实中,因为Makefile的不规范,很可能这种“聪明”的方案根本不能正常工作,只有每次make clean再make才行。
安装完ccache后,可以在/usr/local/bin下建立gcc,g++,c++,cc的symbolic link,链到/usr/bin/ccache上。总之确认系统在调用gcc等命令时会调用到ccache就可以了(通常情况下/usr/local /bin会在PATH中排在/usr/bin前面)。
安装的另外一种方法:
vi ~/.bash_profile
把/usr/lib/ccache/bin路径加到PATH下
PATH=/usr/lib/ccache/bin:$PATH:$HOME/bin
这样每次启动g++的时候都会启动/usr/lib/ccache/bin/g++,而不会启动/usr/bin/g++
效果跟使用命令行ccache g++效果一样
这样每次用户登录时,使用g++编译器时会自动启动ccache
继续测试:
用ccache的第一次编译(make -j4):23分38秒
用ccache的第二次编译(make -j4):8分48秒
用ccache的第三次编译(修改若干配置,make -j4):23分48秒

看来修改配置(我改了CPU类型...)对ccache的影响是很大的,因为基本头文件发生变化后,就导致所有缓存数据都无效了,必须重头来做。但如果只是修改一些.c文件的代码,ccache的效果还是相当明显的。而且使用ccache对项目没有特别的依赖,布署成本很低,这在日常工作中很实用。
可以用ccache -s来查看cache的使用和命中情况:
cache directory /home/lifanxi/.ccachecache hit 7165cache miss 14283called for link 71not a C/C++ file 120no input file 3045files in cache 28566cache size 81.7 Mbytesmax cache size 976.6 Mbytes
可以看到,显然只有第二编次译时cache命中了,cache miss是第一次和第三次编译带来的。两次cache占用了81.7M的磁盘,还是完全可以接受的。
distcc
一台机器的能力有限,可以联合多台电脑一起来编译。这在公司的日常开发中也是可行的,因为可能每个开发人员都有自己的开发编译环境,它们的编译器版本一般是一致的,公司的网络也通常具有较好的性能。这时就是distcc大显身手的时候了。
使用distcc,并不像想象中那样要求每台电脑都具有完全一致的环境,它只要求源代码可以用make -j并行编译,并且参与分布式编译的电脑系统中具有相同的编译器。因为它的原理只是把预处理好的源文件分发到多台计算机上,预处理、编译后的目标文件的链接和其它除编译以外的工作仍然是在发起编译的主控电脑上完成,所以只要求发起编译的那台机器具备一套完整的编译环境就可以了。
distcc安装后,可以启动一下它的服务:
/usr/bin/distccd --daemon --allow 10.64.0.0/16
默认的3632端口允许来自同一个网络的distcc连接。
然后设置一下DISTCC_HOSTS环境变量,设置可以参与编译的机器列表。通常localhost也参与编译,但如果可以参与编译的机器很多,则可以把localhost从这个列表中去掉,这样本机就完全只是进行预处理、分发和链接了,编译都在别的机器上完成。因为机器很多时,localhost的处理负担很重,所以它就不再“兼职”编译了。
export DISTCC_HOSTS="localhost 10.64.25.1 10.64.25.2 10.64.25.3"
然后与ccache类似把g++,gcc等常用的命令链接到/usr/bin/distcc上就可以了。
在make的时候,也必须用-j参数,一般是参数可以用所有参用编译的计算机CPU内核总数的两倍做为并行的任务数。
同样测试一下:
一台双核计算机,make -j4:23分16秒
两台双核计算机,make -j4:16分40秒
两台双核计算机,make -j8:15分49秒
跟最开始用一台双核时的23分钟相比,还是快了不少的。如果有更多的计算机加入,也可以得到更好的效果。
在编译过程中可以用distccmon-text来查看编译任务的分配情况。distcc也可以与ccache同时使用,通过设置一个环境变量就可以做到,非常方便。
总结一下:
tmpfs: 解决IO瓶颈,充分利用本机内存资源
make -j: 充分利用本机计算资源
distcc: 利用多台计算机资源
ccache: 减少重复编译相同代码的时间
这些工具的好处都在于布署的成本相对较低,综合利用这些工具,就可以轻轻松松的节省相当可观的时间。上面介绍的都是这些工具最基本的用法,更多的用法可以参考它们各自的man page。
5.还有提速方法是把屏幕输出重定向到内存文件或/dev/null,因对终端设备(慢速设备)的阻塞写操作也会拖慢速度。推荐内存文件,这样发生错误时,能够查看。

7. 优化gcc编译apache参数 在四核linux上

CHOST是没错的 ,但是你的CFLAGS不对, 对于GCC4.2.2以上的版本 ,不需要那么复杂,-march=native就足够了

CHOST="x86_64-pc-linux-gnu"
CFLAGS="-march=native -O2 -pipe -fomit-frame-pointer"
CXXFLAGS="${CFLAGS}"

而且目前的硬件环境,-O2足矣 ,-O3很多时候甚至不如-O2 ,而且可能会有隐患

当然如果你不太信任这个 ,还是觉得原始的-march好一点 那么可以用下面的

32位系统的调优参数

CHOST="i686-pc-linux-gnu"
CFLAGS="-march=prescott -O2 -pipe -fomit-frame-pointer"
CXXFLAGS="${CFLAGS}"

64位系统的调优参数

CHOST="x86_64-pc-linux-gnu"
CFLAGS="-march=nocona -O2 -pipe -fomit-frame-pointer"
CXXFLAGS="${CFLAGS}"

另外 事实上 -march=native是gcc自动选择最适合cpu的优化
-march=prescott 和 -march=nocona 前者是32位使用的 后者是64位使用的,而且这个march中已经包含了该级别cpu所有的-msse2 -mmmx -mfpmath=sse -msse3 -mssse3这些标签 所以不需要再额外添加

-msse2 -mmmx这些是针对-march=i686这样的基础标签的补充

另外,apache上,用gcc优化编译出来对性能可以说没什么提升,跟直接安装二进制包的差距微不可闻 ,毕竟apache是个吃内存的服务 所以 稳定性第一啦

8. make加什么参数可以加快编译

我们还是需要让make命令带入一些参数给makefile脚本
比如,你在代码里面需要定义一个宏DEBUG来打开调试开关,代码如下:int main(){int i=9;#ifdef DEBUGi=1;#elsei=0;#endifprintf("i=%d\n", i);return 0;}一般来说,这个宏定义可以通过直接修改源代码进行,但这样显然不是很好的办法。另外一个办法是通过makefile修改,比如:
CFLAGS=-g -Wall -DDEBUG
object=myprog
all:$objectmyprog:a.c
gcc ${CFLAGS} a.c -o ${object}
如果更进一步,连makefile都不想修改,我们可以通过向make命令传递参数来进行,为此,我们需要适当的修改makefile如下:
CFLAGS=CFLAG
CFLAGS+=-g -Wall -DDEBUG
object=myprog
all:$objectmyprog:a.c
gcc ${CFLAGS} a.c -o ${object}
此时,如果想打开DEBUG宏,我们可以这样输入make命令:
[ychq@ICM3-2 net]$ make CFLAG=-DDEBUG
gcc -g -Wall -DDEBUG a.c
a.c: In function `main':
a.c:9: warning: implicit declaration of function `printf' [ychq@ICM3-2 net]$
我们可以发现,DEBUG宏已经被正确的传入。
更进一步的,我们可以通过传递不同的参数给make,让make编译不同的模块

9. gcc编译问题

-c和-o都是gcc编译器的可选参数。-c表示只编译(compile)源文件但不链接,会把.c或.cc的c源程序编译成目标文件,一般是.o文件。-o用于指定输出(out)文件名。不用-o的话,一般会在当前文件夹下生成默认的a.out文件作为可执行程序。

10. (Linux)gcc进行优化编译的参数是什么

将file.c文件编译产生可执行文件myprog(-o选项),并且在编译的时候,生成调试信息(-g信息)。让gdb调试器可以调试该程序。
gcc是编译器程序名字
-o是可执行文件名字输出参数
-g是插入调试信息参数
当然是调试可执行文件myprog

热点内容
精易编程 发布:2025-02-07 00:49:10 浏览:464
访问桂纶镁 发布:2025-02-07 00:49:00 浏览:938
安卓免费扫描哪个好 发布:2025-02-07 00:47:40 浏览:90
金蝶修改服务器地址 发布:2025-02-07 00:41:08 浏览:867
安卓手机版的蒸汽平台在哪里下载 发布:2025-02-07 00:29:04 浏览:454
php自学中心 发布:2025-02-07 00:28:50 浏览:270
手机卡在哪里设置密码 发布:2025-02-07 00:21:25 浏览:707
解压哄睡音频 发布:2025-02-07 00:19:56 浏览:159
数据库系统第六版答案 发布:2025-02-07 00:06:10 浏览:971
fut加密毛发怎么样 发布:2025-02-07 00:06:01 浏览:869