当前位置:首页 » 编程软件 » 算法的编程

算法的编程

发布时间: 2022-01-14 14:25:26

算法编程中的作用!

简单说,人没了灵魂,就成尸体了。同样的,一段代码&一个程序没有了算法,那么也就是一堆数字在那了,不会有任何生机。所以听人常说,算法就是一个程序的灵魂。学习编程真正入门的时候,个人就是你积累算法经验的时候。

Ⅱ 计算机编程的算法是什么意思

算法,对应的英文单词是algorithm,这是一个很古老的概念,最早来自数学领域,是用于解决某一类问题的公式和思想。

计算机科学领域的算法,本质是一系列程序指令,用于解答特定的运算和逻辑问题。一般运用时间复杂度和空间复杂度来衡量算法好坏。

学习算法,不需要死记硬背那些冗长复杂的背景知识、底层原理、指令语法,需要做的事零五算法思想、理解算法对内存空间和性能的影响,以及开动脑筋去寻求解决问题的最佳方案。

数据结构是算法的基石,是数据的组织、管理和存储的格式,其目的是为了高效地访问和修改数据。数据结构的组成方式有:线性结构、树、图等。有了数据结构这个舞台,算法才可以尽情舞蹈,所以在学习算法之前最好先系统学习数据结构。在解决问题时,不同的算法会选用不同的数据结构。例如排序算法中的堆排序,利用的就是二叉堆这样一种数据结构。

Ⅲ 编程中的算法是指什么

这么给你说吧..有3箱苹果 一箱2个 求有多少个苹果..
那么则有算法1 3*2
则有算法2 2+2+2
甚至还可以有算法3..根据不同人的逻辑思维 有不同的算法..

Ⅳ “算法” 在编程中什么意思

比如你从b地到a地,有许多条路可以走,任何一条路都可以看作一个算法。

编程中解决一个问题同样有很多不同方法,每个方法就是一个算法。

算法里面总有一个最好的,效率最高的,能否做到用效率最高的方法来完成任务,就是一个程序员水平高低的表现之一

Ⅳ 计算机编程常用算法有哪些

贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。

模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html

Ⅵ 请问算法和编程的区别,最好能举例

解决一个问题,有不同的解决方法。
这就是算法。
比如:1 + 2 + 。。。100 = 5050。
显然,有不同的算法。

编程,是跟着算法来的。
当然,同样的算法,也能写出不同的程序结构。
这就是经验的问题了。

Ⅶ 软件编程经常用的算法都有哪些

排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
冒泡排序
654
比如说这个,我想让它从小到大排序,怎么做呢?
第一步:6跟5比,发现比它大,则交换。564
第二步:5跟4比,发现比它大,则交换。465
第三步:6跟5比,发现比它大,则交换。456

Ⅷ 算法与编程有什么关系

算法有有穷性能,程序可以没有,算法是通过编程来体现的

算法是程序设计的一部分,一般都是要先设计算法,再进行编程,调试、运行的

补充:算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

Ⅸ 关于算法编程题(C语言实现)

char *a; //字符串 改为 char a[20];//存放字符串的字符数组
int jie; //方程的解 改为 double jie;
dy = 0; 删去 dy=0;
两处的 for(i=1;i<=z;i++) 都改为 for(i = 0; i < z; i++)
if (a[i] == '==' ) 改为 if (a[i] == '=' )
{z=i; 改为 {dy = i;
a=0;b=0; 删去 a=0;b=0;
fun(a,1,dy,&b,&c); 改为 fun(a, 0, dy - 1, &b, &c);
fun(a,dy,z,&b,&c); 改为 fun(a, dy + 1, z - 1, &b, &c);
jie=(d-b)/(e-c); 改为 jie=((double)(d-b))/(e-c);
printf("%c = %d",zm,jie); 改为 printf("%c = %f",zm,jie);

热点内容
密码箱的密码忘记了如何开锁 发布:2024-11-15 06:04:41 浏览:955
安卓软件和苹果系统哪个好 发布:2024-11-15 05:48:32 浏览:283
pythonwhileelse 发布:2024-11-15 05:39:10 浏览:671
java文件流上传文件 发布:2024-11-15 05:24:02 浏览:147
linux安装so 发布:2024-11-15 05:22:29 浏览:581
九游版冒险王2适合安卓哪个版本 发布:2024-11-15 05:12:33 浏览:600
iphonexsmax怎么连接服务器 发布:2024-11-15 05:11:46 浏览:775
长江存储校招 发布:2024-11-15 05:11:01 浏览:966
oraclesql函数大全 发布:2024-11-15 05:10:00 浏览:465
form多文件上传 发布:2024-11-15 05:09:21 浏览:913