linuxkernel编译
下载内核
如果您只是想编译一个您已安装内核的新版本(例如,实现 SMP 支持),那不需要下载任何代码 -- 跳过此部分继续下一屏。
您可以在 http://www.kernel.org/pub/linux/kernel 上找到内核代码。当您进入到那后,您将发现内核的源代码按内核版本(v2.2、v2.3 等),被组织到多个不同的目录中。在每个目录中,您将发现文件被冠以"linux-x.y.z.tar.gz"和"linux-x.y.z.tar.bz2"。这些就是 Linux 内核的源代码。您也将看到冠以 "patch-x.y.z.gz" 和 "patch-x.y.z.bz2" 的文件。这些是用来更新前面完整的内核源代码的补丁包。如果您希望编译一个新的内核版本,您将需要下载这些"linux"文件其中之一。
内核解包
如果您已从 kernel.org 下载一个新的内核,现在是要将其解包时候了。首先,cd /usr/src。如果这里有一个存在的"linux"目录,将其改名为"linux.old" ("mv linux linux.old",以 root 权限)。
现在,可以解开新的内核包了。仍然在 /usr/src 目录下,输入 tar xzvf /path/to/my/kernel-x.y.z.tar.gz 或者 cat /path/to/my/kernel-x.y.z.tar.bz2 | bzip2 -d | tar xvf -,根据您下载的源代码是用 gzip 或 bzip2 压缩的。在输入完此命令后,您下载的内核源代码会被释放到一个新的"linux"目录下。注意 -- 全套内核源代码通常将在硬盘上占用超过 50 兆空间!
讨论配置问题
在您编译内核前,您需要配置它,配置是您精确控制在新内核中启用(禁止)哪些内核功能的机会。您也将控制哪些会被编译到内核的二进制映像(在启动时被载入)而哪些被编译到需要时载入的内核模块文件。
老式配置内核的方法是极为痛苦的过程,并涉及到进入 /usr/src/linux 目录并输入 make config 命令。请放弃这种配置内核的方式 -- 除非您想在命令行上回答几百个(对!几百个)“yes/no”的问题。
配置的新途径
我们是现代人类,我们不在输入 make config,而是输入 make menuconfig 或者 make xconfig。如果您想要配置您的内核,使用上述选择之一。如果您输入 make menuconfig,您将使用一个漂亮的基于文本的彩色菜单系统来配置内核。如果您输入 make xconfig,您将使用一个更漂亮的基于 X-Window 的 GUI 界面来配置内核的各种选项。这里有一个使用 "make menuconfig" 的屏幕截图:
当使用 "make menuconfig" 时,在左面出现一个 "< >" 的选项能被编译成为一个模块。当选项被选中,按下空格键来循环选择选项是被选中或未选中, ("<*>")表示将被编译成内核映像而("<M>")表示将被编译成模块。
配置技巧
在这里有极其多的内核选项,而且我们无法在此一一解释 -- 所以请利用内核内置的帮助功能。基本上每个选项都至少有一些描述,而且每个通常都有一行"如果您不知道这个选项的含义,输入 Y。(或者 N)"。这些提示在您不知道一个特定选项的含义时能帮助您。要使用帮助,选中您有疑问的选项然后按 "?" 键。
编译和安装内核
make dep; make clean
一旦您的内核配置完毕,就可开始编译它了。在我们能编译它前,我们需要生成依赖(dependency)信息并清除任何老的"编译结果"。这可以通过在 /usr/src/linux 下输入 make dep; make clean 完成。
make bzImage
现在是编译真正的二进制内核映像时候了。输入 make bzImage。过几分钟后,编译会结束而且您在 /usr/src/linux/arch/i386/boot(x86 PC 内核)目录下找到 bzImage 文件。我们将待会告诉您如何安装这个新内核,但是现在我们要看看模块编译了。
编译模块
现在我们有了 bzImage,下面要编译模块了。即使您在配置内核时没有使用任何模块,也不要跳过此步骤 -- 在编译完 bzImage 后立刻编译模块是个好习惯。而且,如果您真的没有模块需要编译,这个步骤也非常快就结束了。输入 make moles; make moles_install。这将导致模块被编译而且被安装到 /usr/lib/<内核版本号> 目录下。
祝贺您!您的内核已经被编译完成了,您的内核模块也编译完成并被安装。现在是要重新配置 LILO,这样您能使用新的内核。
启动配置
LILO 入门
现在是最后来重新配置 LILO 的时候了,它将负责载入新的内核。LILO 是最流行的 Linux 引导工具,而且为所有的主流 Linux 发行商所采用。您要作的第一件事是察看您的 /etc/lilo.conf 文件。它将包含一行看似 "image=/vmlinuz" 的语句。该语句告诉 LILO 到何处找到内核。
启动配置, 第二部分
要配置 LILO 来使用新的内核,您有两种选择。第一个是覆盖您现有的内核 -- 除非您手头上有一些紧急启动措施如还有此内核的引导盘,这很危险的方法。
更为安全的选择是配置 LILO 是得它能从新的或旧的内核引导。LILO 可配置成从新内核缺省启动,但仍提供一种方法让您遇上问题时能选择旧的内核来启动。这是推荐的作法,也是我们将随后介绍的方法。
启动配置, 第三部分
您的 lilo.conf 文件有可能看起来如下:
boot=/dev/hda
delay=20
vga=normal
root=/dev/hda1
read-only
image=/vmlinuz
label=linux
要在您的 lilo.conf 文件中增添新的项目,参见下列步骤。首先,拷贝 /usr/src/linux/arch/i386/boot/bzImage 到您的根(root)分区上的一个文件,例如 /vmlinuz2。一旦拷贝完毕,复制您 lilo.conf 文件的最后三行并将它们添加到该文件的最后... 我们即将结束整个步骤了...
启动配置, 第四部分
现在,您的 lilo.conf 文件应该看起来如下:
boot=/dev/hda
delay=20
vga=normal
root=/dev/hda1
read-only
image=/vmlinuz
label=linux
image=/vmlinuz
label=linux
首先,将第一个 "image=" 行改为 "image=/vmlinuz2"。其次,将第二个 "label=" 行改为 "label=oldlinux"。然后,确定在文件的开始有一行 "delay=20" -- 如果没有,增添一行。如果它已经存在,将数字至少设为 20。
启动配置, 第五部分
您最后的 lilo.conf 文件将看起来如下:
boot=/dev/hda
delay=20
vga=normal
root=/dev/hda1
read-only
image=/vmlinuz2
label=linux
image=/vmlinuz
label=oldlinux
作完这些修改后,您将需要以 root 身份运行 "lilo"。这非常重要!如果您不执行此步,启动的过程无法继续。运行 "lilo" 将给 lilo 一个机会来更新它的启动映射。
❷ 如何编译Linux内核
内核配置完成,输入make命令即可开始编译内核。如果没有修改Makefile文件并指定ARCH和CROSS_COMPILE参数,则须在命令行中指定:
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
目前大多数主机都是多核处理器,为了加快编译进度,可以开启多线程编译,在make的时候加上“-jN”即可,N的值为处理器核心数目的2倍。例如对于I7 4核处理器,可将N设置为8:
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- -j8
采用多线程编译的优点是能加快编译进度,。具体可以参照ZLG《嵌入式Linux开发教程(下册)》第1章。
❸ Linux内核源码如何编译
首先uname -r看一下你当前的linux内核版本
1、linux的源码是在/usr/src这个目录下,此目录有你电脑上各个版本的linux内核源代码,用uname -r命令可以查看你当前使用的是哪套内核,你把你下载的内核源码也保存到这个目录之下。
2、配置内核 make menuconfig,根据你的需要来进行选择,设置完保存之后会在当前目录下生成.config配置文件,以后的编译会根据这个来有选择的编译。
3、编译,依次执行make、make bzImage、make moles、make moles
4、安装,make install
5、.创建系统启动映像,到 /boot 目录下,执行 mkinitramfs -o initrd.img-2.6.36 2.6.36
6、修改启动项,因为你在启动的时候会出现多个内核供你选择,此事要选择你刚编译的那个版本,如果你的电脑没有等待时间,就会进入默认的,默认的那个取决于 /boot/grub/grub.cfg 文件的设置,找到if [ "${linux_gfx_mode}" != "text" ]这行,他的第一个就是你默认启动的那个内核,如果你刚编译的内核是在下面,就把代表这个内核的几行代码移到第一位如:
menuentry 'Ubuntu, with Linux 3.2.0-35-generic' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail
gfxmode $linux_gfx_mode
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
search --no-floppy --fs-uuid --set=root 9961c170-2566-41ac-8155-18f231c1bea5
linux/boot/vmlinuz-3.2.0-35-generic root=UUID=9961c170-2566-41ac-8155-18f231c1bea5 ro quiet splash $vt_handoff
initrd/boot/initrd.img-3.2.0-35-generic
}
当然你也可以修改 set default="0"来决定用哪个,看看你的内核在第几位,default就填几,不过我用过这种方法,貌似不好用。
重启过后你编译的内核源码就成功地运行了,如果出现问题,比如鼠标不能用,usb不识别等问题就好好查查你的make menuconfig这一步,改好后就万事ok了。
最后再用uname -r看看你的linux内核版本。是不是你刚下的那个呢!有没有成就感?
打字不易,如满意,望采纳。
❹ linux 文件系统 内核编译
1、第一条命令没问题;
2、第二条命令:
#mkfs.ext2 myfs
myfs is not a block special device.
无路如何也要继续?(y,n)
这时要输入y
3、第三条命令,linux kernel不支持myext2文件系统。我猜你是想要在红帽或ubuntu上mount一个ext2文件系统的loop设备,但是想使用myext2的文件系统驱动,对吧。我没有这么做过,猜不出你的myext2摘出来之后是什么样子的。我以前试过在linux安装新的文件系统支持,比如fuse系统,源码编译通过后会生成一个.ko的模块文件,使用insmod命令将其加入内核,才能获得内核对该文件系统的支持。我想你可能也应该这样做,你应该需要生成一个类似myext2.ko的模块,然后将其insmod到内核中去。
❺ 如何重新编译linux内核
因为一般电脑安装的系统都是Windows,而整个编译过程都需要在Linux环境下实现,所以最好是在虚拟机里安装Linux系统来完成这一过程。我使用的虚拟机是VMware-workstation-full-v7.1.4。
然后,我们需要下载一个较高版本的Linux系统的镜像文件,安装在虚拟机上,作为编译环境。我使用的是ubuntu-11.04-desktop-i386。之所以选择较高版本,是因为它的界面比较方便用户操作。
然后下载一个Linux内核源代码文件,将它保存到虚拟机上新安装的系统中去。并解压到/usr/src目录。我使用的是linux-2.6.36,下载低版本的原因是,小巧轻便,易于编译。
解压命令如下:
bzip2 -d linux-2.6.36.tar.bz2
tar -xvf linux-2.6.36.ta
修改/usr/src/linux-2.6.36/kernel/sys.c文件,在文件末尾增加一个系统调用函数。自行编写一个简单的程序即可,只为测试用。
修改/usr/src/linux-2.6.36/arch/x86/kernel/syscall_table_32.S,为新添加的程序配置系统调用号。
在/usr/src/linux-2.6.36/arch/x86/include/asm/unistd_32.h中配置系统调用表。
下面就是最重要的内核编译与安装:
首先配置编译信息,使其生成适合当前机器的Makefile,输入make oldconf ig。
接着还要输入make menuconfig,在字符界面下进行必要的细微的修改。
然后要经过四步编译过程(直接输入命令即可):
(1)make bzImage
将内核编译为压缩映像,存储在源码根目录下的“System.map”文件中。
(2)make moles
编译各个模块。
(3)sudo make moles_install
安装模块
(4)sudo make install
安装内核
第(2)(3)步等待时间较长,可能需要数个小时,请耐心等待。
无报错的话重启进入GRUB界面,就可以看到新编译的内核了。
按回车键进入我们编译的目标内核中,用关键词搜索查看新增加的系统调用“my call”是否已在内核中:
编写测试程序,调用新添加的系统调用:
测试成功,说明系统调用添加成功,进而说明内核编译成功!
以上的办法你可以试一下,希望对你有所帮助。
❻ Linux内核编译
内核,是一个操作系统的核心。它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。Linux作为一个自由软件,
在广大爱好者的支持下,内核版本不断更新。新的内核修订了旧内核的bug,并增加了许多新的特性。如果用户想要使用这些新特性,或想根据自己的系统度身定
制一个更高效,更稳定的内核,就需要重新编译内核。本文将以RedHat Linux 6.0(kernel
2.2.5)为操作系统平台,介绍在Linux上进行内核编译的方法。
一、 下载新内核的源代码
目前,在Internet上提供Linux源代码的站点有很多,读者可以选择一个速度较快的站点下载。笔者是从站点www.kernelnotes.org上下载了Linux的最新开发版内核2.3.14的源代码,全部代码被压缩到一个名叫Linux-2.3.14.tar.gz的文件中。
二、 释放内核源代码
由于源代码放在一个压缩文件中,因此在配置内核之前,要先将源代码释放到指定的目录下。首先以root帐号登录,然后进入/usr/src子目录。如果用户在安装Linux时,安装了内核的源代码,则会发现一个linux-2.2.5的子目录。该目录下存放着内核2.2.5的源代码。此外,还会发现一个指向该目录的链接linux。删除该连接,然后将新内核的源文件拷贝到/usr/src目录中。
(一)、用tar命令释放内核源代码
# cd /usr/src
# tar zxvf Linux-2.3.14.tar.gz
文件释放成功后,在/usr/src目录下会生成一个linux子目录。其中包含了内核2.3.14的全部源代码。
(二)、将/usr/include/asm、/usr/inlude/linux、/usr/include/scsi链接到/usr/src/linux/include目录下的对应目录中。
# cd /usr/include
# rm -Rf asm linux
# ln -s /usr/src/linux/include/asm-i386 asm
# ln -s /usr/src/linux/include/linux linux
# ln -s /usr/src/linux/include/scsi scsi
(三)、删除源代码目录中残留的.o文件和其它从属文件。
# cd /usr/src/linux
# make mrproper
三、 配置内核
(一)、启动内核配置程序。
# cd /usr/src/linux
# make config
除了上面的命令,用户还可以使用make menuconfig命令启动一个菜单模式的配置界面。如果用户安装了X window系统,还可以执行make xconfig命令启动X window下的内核配置程序。
(二)、配置内核
Linux的
内核配置程序提供了一系列配置选项。对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内
核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序
的支持。由于内核的配置选项非常多,本文只介绍一些比较重要的选项。
1、Code maturity level options(代码成熟度选项)
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [N/y/?]
如果用户想要使用还处于测试阶段的代码或驱动,可以选择“y”。如果想编译出一个稳定的内核,则要选择“n”。
1、 Processor type and features(处理器类型和特色)
(1)、Processor family (386, 486/Cx486, 586/K5/5x86/6x86, Pentium/K6/TSC, PPro/6x86MX) [PPro/6x86MX] 选择处理器类型,缺省为Ppro/6x86MX。
(2)、Maximum Physical Memory (1GB, 2GB) [1GB] 内核支持的最大内存数,缺省为1G。
(3)、Math emulation (CONFIG_MATH_EMULATION) [N/y/?] 协处理器仿真,缺省为不仿真。
(4)、MTRR (Memory Type Range Register) support (CONFIG_MTRR) [N/y/?]
选择该选项,系统将生成/proc/mtrr文件对MTRR进行管理,供X server使用。
(5)、Symmetric multi-processing support (CONFIG_SMP) [Y/n/?] 选择“y”,内核将支持对称多处理器。
2、 Loadable mole support(可加载模块支持)
(1)、Enable loadable mole support (CONFIG_MODULES) [Y/n/?] 选择“y”,内核将支持加载模块。
(2)、Kernel mole loader (CONFIG_KMOD) [N/y/?] 选择“y”,内核将自动加载那些可加载模块,否则需要用户手工加载。
3、 General setup(一般设置)
(1)、Networking support (CONFIG_NET) [Y/n/?] 该选项设置是否在内核中提供网络支持。
(2)、PCI support (CONFIG_PCI) [Y/n/?] 该选项设置是否在内核中提供PCI支持。
(3)、PCI access mode (BIOS, Direct, Any) [Any] 该选项设置Linux探测PCI设备的方式。选择“BIOS”,Linux将使用BIOS;选择“Direct”,Linux将不通过BIOS;选择“Any”,Linux将直接探测PCI设备,如果失败,再使用BIOS。
(4)Parallel port support (CONFIG_PARPORT) [N/y/m/?] 选择“y”,内核将支持平行口。
4、 Plug and Play configuration(即插即用设备支持)
(1)、Plug and Play support (CONFIG_PNP) [Y/m/n/?] 选择“y”,内核将自动配置即插即用设备。
(2)、ISA Plug and Play support (CONFIG_ISAPNP) [Y/m/n/?] 选择“y”,内核将自动配置基于ISA总线的即插即用设备。
5、 Block devices(块设备)
(1)、Normal PC floppy disk support (CONFIG_BLK_DEV_FD) [Y/m/n/?] 选择“y”,内核将提供对软盘的支持。
(2)、Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support (CONFIG_BLK_DEV_IDE) [Y/m/n/?] 选择“y”,内核将提供对增强IDE硬盘、CDROM和磁带机的支持。
6、 Networking options(网络选项)
(1)、Packet socket (CONFIG_PACKET) [Y/m/n/?] 选择“y”,一些应用程序将使用Packet协议直接同网络设备通讯,而不通过内核中的其它中介协议。
(2)、Network firewalls (CONFIG_FIREWALL) [N/y/?] 选择“y”,内核将支持防火墙。
(3)、TCP/IP networking (CONFIG_INET) [Y/n/?] 选择“y”,内核将支持TCP/IP协议。
(4)The IPX protocol (CONFIG_IPX) [N/y/m/?] 选择“y”,内核将支持IPX协议。
(5)、Appletalk DDP (CONFIG_ATALK) [N/y/m/?] 选择“y”,内核将支持Appletalk DDP协议。
8、SCSI support(SCSI支持)
如果用户要使用SCSI设备,可配置相应选项。
9、Network device support(网络设备支持)
Network device support (CONFIG_NETDEVICES) [Y/n/?] 选择“y”,内核将提供对网络驱动程序的支持。
10、Ethernet (10 or 100Mbit)(10M或100M以太网)
在该项设置中,系统提供了许多网卡驱动程序,用户只要选择自己的网卡驱动就可以了。此外,用户还可以根据需要,在内核中加入对FDDI、PPP、SLIP和无线LAN(Wireless LAN)的支持。
11、Character devices(字符设备)
(1)、Virtual terminal (CONFIG_VT) [Y/n/?] 选择“y”,内核将支持虚拟终端。
(2)、Support for console on virtual terminal (CONFIG_VT_CONSOLE) [Y/n/?]
选择“y”,内核可将一个虚拟终端用作系统控制台。
(3)、Standard/generic (mb) serial support (CONFIG_SERIAL) [Y/m/n/?]
选择“y”,内核将支持串行口。
(4)、Support for console on serial port (CONFIG_SERIAL_CONSOLE) [N/y/?]
选择“y”,内核可将一个串行口用作系统控制台。
12、Mice(鼠标)
PS/2 mouse (aka "auxiliary device") support (CONFIG_PSMOUSE) [Y/n/?] 如果用户使用的是PS/2鼠标,则该选项应该选择“y”。
13、Filesystems(文件系统)
(1)、Quota support (CONFIG_QUOTA) [N/y/?] 选择“y”,内核将支持磁盘限额。
(2)、Kernel automounter support (CONFIG_AUTOFS_FS) [Y/m/n/?] 选择“y”,内核将提供对automounter的支持,使系统在启动时自动 mount远程文件系统。
(3)、DOS FAT fs support (CONFIG_FAT_FS) [N/y/m/?] 选择“y”,内核将支持DOS FAT文件系统。
(4)、ISO 9660 CDROM filesystem support (CONFIG_ISO9660_FS) [Y/m/n/?]
选择“y”,内核将支持ISO 9660 CDROM文件系统。
(5)、NTFS filesystem support (read only) (CONFIG_NTFS_FS) [N/y/m/?]
选择“y”,用户就可以以只读方式访问NTFS文件系统。
(6)、/proc filesystem support (CONFIG_PROC_FS) [Y/n/?] /proc是存放Linux系统运行状态的虚拟文件系统,该项必须选择“y”。
(7)、Second extended fs support (CONFIG_EXT2_FS) [Y/m/n/?] EXT2是Linux的标准文件系统,该项也必须选择“y”。
14、Network File Systems(网络文件系统)
(1)、NFS filesystem support (CONFIG_NFS_FS) [Y/m/n/?] 选择“y”,内核将支持NFS文件系统。
(2)、SMB filesystem support (to mount WfW shares etc.) (CONFIG_SMB_FS)
选择“y”,内核将支持SMB文件系统。
(3)、NCP filesystem support (to mount NetWare volumes) (CONFIG_NCP_FS)
选择“y”,内核将支持NCP文件系统。
15、Partition Types(分区类型)
该选项支持一些不太常用的分区类型,用户如果需要,在相应的选项上选择“y”即可。
16、Console drivers(控制台驱动)
VGA text console (CONFIG_VGA_CONSOLE) [Y/n/?] 选择“y”,用户就可以在标准的VGA显示方式下使用Linux了。
17、Sound(声音)
Sound card support (CONFIG_SOUND) [N/y/m/?] 选择“y”,内核就可提供对声卡的支持。
18、Kernel hacking(内核监视)
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [N/y/?] 选择“y”,用户就可以对系统进行部分控制。一般情况下选择“n”。
四、 编译内核
(一)、建立编译时所需的从属文件
# cd /usr/src/linux
# make dep
(二)、清除内核编译的目标文件
# make clean
(三)、编译内核
# make zImage
内核编译成功后,会在/usr/src/linux/arch/i386/boot目录中生成一个新内核的映像文件zImage。如果编译的内核很大的话,系统会提示你使用make bzImage命令来编译。这时,编译程序就会生成一个名叫bzImage的内核映像文件。
(四)、编译可加载模块
如果用户在配置内核时设置了可加载模块,则需要对这些模块进行编译,以便将来使用insmod命令进行加载。
# make moles
# make modelus_install
编译成功后,系统会在/lib/moles目录下生成一个2.3.14子目录,里面存放着新内核的所有可加载模块。
五、 启动新内核
(一)、将新内核和System.map文件拷贝到/boot目录下
# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.3.14
# cp /usr/src/linux/System.map /boot/System.map-2.3.14
# cd /boot
# rm -f System.map
# ln -s System.map-2.3.14 System.map
(二)、配置/etc/lilo.conf文件。在该文件中加入下面几行:
default=linux-2.3.14
image=/boot/vmlinuz-2.3.14
label=linux-2.3.14
root=/dev/hda1
read-only
(三)、使新配置生效
# /sbin/lilo
(四)、重新启动系统
# /sbin/reboot
新内核如果不能正常启动,用户可以在LILO:提示符下启动旧内核。然后查出故障原因,重新编译新内核即可。
了解更多开源相关,去LUPA社区看看吧。
希望对你能有所帮助。
❼ linux编译内核步骤
一、准备工作
a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/moles/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/moles/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
❽ linux 编译内核几个常见问题解决方法
第一次把自己编译的驱动模块加载进开发板,就出现问题,还好没花费多长时间,下面列举出现的问题及解决方案
1:出现insmod: error inserting 'hello.ko': -1 Invalid mole format
法一(网上的):是因为内核模块生成的环境与运行的环境不一致,用linux-2.6.27内核源代码生成的模块,可能就不能在linux-2.6.32.2内核的linux环境下加载,需要在linux-2.6.27内核的linux环境下加载。
a.执行 uname -r //查看内核版本
b.一般出错信息被记录在文件/var/log/messages中,执行下面命令看错误信息
# cat /var/log/messages |tail
若出现类似下面:
Jun 4 22:07:54 localhost kernel:hello: version magic '2.6.35.6-45.fc14.i686.PAE
' should be '2.6.35.13-92.fc14.i686.PAE'
则把 Makefile里的KDIR :=/lib/moles/2.6.35.6-45.fc14.i686.PAE/build1 改为
KDIR :=/lib/moles/2.6.35.13-92.fc14.i686.PAE/build1 //改成自己内核源码路径
(这里的build1是一个文件链接,链接到/usr/src/kernels/2.6.35.6-45.fc14.i686.PAE和13-92的)
然并卵,我的fedora 14 /usr/src/kernels下并没有2.6.35.13-92.fc14.i686.PAE,只有2.6.35.13-92.fc14.i686,虽然不知道两者有什么区别,但改成2.6.35.13-92.fc14.i686还是不行,照样这个问题,还好后来在看教学视频的到启发
法二:改的还是那个位置
KDIR :=/opt/FriendlyARM/linux-2.6.32.2 //把这里改成你编译生成kernel的那个路径
all:
$ (MAKE) -C $ (KDIR) M = $ (PWD) moles ARCH=arm CROSS_COMPILE=arm-linux- //加这句
2. [70685.298483] hello: mole license 'unspecified' taints kernel.
[70685.298673] Disabling lock debugging e to kernel taint
方法:在模块程序中加入: MODULE_LICENSE("GPL");
3. rmmod: chdir(2.6.32.2-FriendlyARM): No such file or directory 错误解决
方法:lsmod 可查看模块信息
即无法删除对应的模块。
就是必须在/lib/moles下建立错误提示的对应的目录((2.6.32.2)即可。
必须创建/lib/moles/2.6.32.2这样一个空目录,否则不能卸载ko模块.
# rmmod nls_cp936
rmmod: chdir(/lib/moles): No such file or directory
但是这样倒是可以卸载nls_cp936,不过会一直有这样一个提示:
rmmod: mole 'nls_cp936' not found
初步发现,原来这是编译kernel时使用make moles_install生成的一个目录,
但是经测试得知,rmmod: mole 'nls_cp936' not found来自于busybox,并不是来自kernel
1).创建/lib/moles/2.6.32.2空目录
2).使用如下源码生成rmmod命令,就可以没有任何提示的卸载ko模块了[luther.gliethttp]
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
int main(int argc, char *argv[])
{
const char *modname = argv[1];
int ret = -1;
int maxtry = 10;
while (maxtry-- > 0) {
ret = delete_mole(modname, O_NONBLOCK | O_EXCL);//系统调用sys_delete_mole
if (ret < 0 && errno == EAGAIN)
usleep(500000);
else
break;
}
if (ret != 0)
printf("Unable to unload driver mole \"%s\": %s\n",
modname, strerror(errno));
}
3).把生成的命令复制到文件系统
# arm-linux-gcc -static -o rmmod rmmod.c
# arm-linux-strip -s rmmod
# cp rmmod /nfs/
cp /nfs/rmmod /sbin
代码如下:
proc.c
[html] view plain
<span style="font-size:18px;">#include <linux/mole.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/proc_fs.h> /* Necessary because we use the proc fs */
#define procfs_name "proctest"
MODULE_LICENSE("GPL");
struct proc_dir_entry *Our_Proc_File;
int procfile_read(char *buffer,char **buffer_location,off_t offset, int buffer_length, int *eof, void *data)
{ int ret;
ret = sprintf(buffer, "HelloWorld!\n");
return ret;
}
int proc_init()
{ Our_Proc_File = create_proc_entry(procfs_name, 0644, NULL);
if (Our_Proc_File == NULL) {
remove_proc_entry(procfs_name, NULL);
printk(KERN_ALERT "Error: Could not initialize /proc/%s\n",procfs_name);
return -ENOMEM; }
Our_Proc_File->read_proc = procfile_read;//
// Our_Proc_File->owner = THIS_MODULE;
Our_Proc_File->mode = S_IFREG | S_IRUGO;
Our_Proc_File->uid = 0;
Our_Proc_File->gid = 0;
Our_Proc_File->size = 37;
printk("/proc/%s created\n", procfs_name);
return 0;
}
void proc_exit()
{ remove_proc_entry(procfs_name, NULL);
printk(KERN_INFO "/proc/%s removed\n", procfs_name);
}
mole_init(proc_init);
mole_exit(proc_exit);</span></span></span></span></span>
[html] view plain
<span style="font-size:18px;">
ifneq ($(KERNELRELEASE),)
obj-m :=proc.o
else
KDIR :=/opt/FriendlyARM/linux-2.6.32.2
#KDIR :=/lib/moles/2.6.35.13-92.fc14.i686.PAE/build1
PWD :=$(shell pwd)
all:
$(MAKE) -C $(KDIR) M=$(PWD) moles ARCH=arm CROSS_COMPILE=arm-linux-
clean:
rm -f *.ko *.o *.mod.o *.mod.c *.symvers
endif</span></span></span></span></span>
make后生成proc.ko,再在开发板上insmod proc.ko即可
执行 dmesg 就可以看到 产生的内核信息啦
❾ 请简述嵌入式linux内核的编译过程
编译及安装简要步骤:
编辑Makefile版本信息
定义内核特性,生成配置文件.config,用于编译:make xconfig
编译内核:make
安装内核:make install
安装模块:make moles_install
具体步骤如下:
内核配置
先定义内核需要什么特性,并进行配置。内核构建系统(The kernel build system)远不是简单用来构建整个内核和模块,想了解更多的高级内核构建选项,你可以查看 Documentation/kbuild 目录内的内核文档。
可用的配置命令和方式:
make menuconfig
命令:make menuconfig
编译内核
编译和安装内核
编译步骤:
$ cd /usr/src/linux2.6
$ make
安装步骤 (logged as
$ make install
$ make moles_install
提升编译速度
多花一些时间在内核配置上,并且只编译那些你硬件需要的模块。这样可以把编译时间缩短为原来的1/30,并且节省数百MB的空间。另外,你还可以并行编译多个文件:
$ make -j <number>
make 可以并行执行多个目标(target)(KEMIN:前提是目标规则间没有交叉依赖项,这个怎么做到的?)
$ make -j 4
即便是在单处理器的工作站上也会很快,读写文件的时间被节省下来了。多线程让CPU保持忙碌。
number大于4不见得有效了,因为上下文切换过多反而降低的工作的速度。
make -j <4*number_of_processors>
内核编译tips
查看完整的 (gcc, ld)命令行: $ make V=1
清理所有的生成文件 (to create patches...): $ make mrproper
部分编译:$ make M=drivers/usb/serial
单独模块编译:$ make drivers/usb/serial/visor.ko
最终生成的文件
vmlinux 原始内核镜像,非压缩的
arch/<arch>/boot/zImage zlib压缩的内核镜像(Default image on arm)
arch/<arch>/boot/bzImage bzip2压缩的内核镜像。通常很小,足够放入一张软盘(Default image on i386)