分子运动编程
㈠ 什么是分子运动
物质都是运动的,永不停息,静止只是相对的,运动才是绝对的。
分子运动论是从物质的微观结构出发来阐述热现象规律的理论,例如它阐明了气体的温度是分子平均平动动能大小的标志,大量气体分子对容器器壁的碰撞而产生对容器壁的压强。
一,自然界存在着各种热现象:物体温度的变化,物质状态的变化,物体热胀冷缩的现象等。这些热现象的解释,都涉及到热现象的本质是什么?这也是人类长期探索的问题,直到17世纪和18世纪期间,人们才开始认识到热现象是由物质内部大量微粒的运动引起的,这种认识逐渐发展成为一种科学理论枣分子动理论。到19世纪建立了能量的概念,人们又逐渐认识到与热现象相联系的能量即内能。
二,分子与物质
我们生活在物质世界中,我们的周围充满着物质:水、空气、石头、金属、动物、植物等都是物质。而对于物质是怎样构成的,这一古老课题,很早就有过种种猜测,有的主张万物之源是“气”,有的主张万物之源是“火”。公元前5世纪墨子提出的物质的最小单位是“端”,公元前4世纪古希腊的德漠克利特认为宇宙万物,是由大小和质量不同的,不可入的,运动不息的原子组成。此后经过近2000年的探索,直到17世纪末,才科学地认识到物质是由分子组成的。
①物质是由分子组成的,分子是极小的微粒。如果把分子看做球形,它的直径约10-10米,这是一个极小的长度,不仅肉眼看不到,即使用现代的显微镜也看不清分子。由于分子极小,所以物体含分子数目大得惊人。通常情况下,1厘米3空气里大约有2.7×1019个分子,如果人数数的速度能达到每秒数100亿个,要数完这个数,也得用80多年。
构成物质的分子永不停息地运动着。由于分子太小,目前尚无法直接观察分子的行为,但我们可以从宏观的实验现象,来判断分子的行为。
演示实验:扩散现象
出示事先装有二氧化氮(或溴气)气体的广口瓶。说明瓶内红棕色的气体是二氧化氮。再出示一只空的广口瓶,其实瓶内装满了空气。将装有二氧化氮的瓶子向空瓶倾倒,这时看到红棕色气体流入空瓶,开始先沉到瓶底。此现象说明二氧化氮的密度大于空气的密度。
另取一只“空”瓶,按课本图2梍1所示,将其倒扣在装有二氧化氮气体的瓶子上。这时要强调:装有密度较大的二氧化氮气体的瓶子在下,装有空气的瓶子在上,抽掉玻璃隔板,二氧化氮气体不会流进空气瓶内。现在我抽掉隔板,没有出现二氧化氮气体流动的现象,我们停一会儿再来观察瓶内出现的现象。
在等候期间,组织学生自己做墨水扩散实验:同学们课桌上的烧杯里盛有清水,大家不要振动桌子,保持清水平静。请大家向清水里慢慢的滴入一滴墨水,观察墨水的变化情况。滴入的墨水将下沉,在清水中留下了清晰的墨迹,过一段时间墨迹的轮廓变模糊,墨迹变淡,周围的水色变墨。
组织学生观察前面已做的气体扩散实验。此时空气瓶出现了红棕色,下面红棕色的二氧化氮瓶中颜色变淡。实验现象表明,二氧化氮气体进入了空气,空气进入了二氧化氮气体中。像这样,不同的物体在互相接触时,彼此进入对方的现象,叫做扩散。
扩散现象也可以发生在液体之间。请大家再观察一下刚才大家滴入清水的墨水,已经没有明显的墨迹了,整杯水都变黑些了,说明墨水和水也发生了扩散。为了说明液体的扩散现象,我们再来做个实验。(按照课本图2-3液体的扩散实验演示)现在我们看到无色的清水和蓝色的硫酸铜溶液之间有明显的界面,要观察到扩散现象需要较长的时间。为了节省课堂时间,几天前我就做了同样的实验,请大家看几天前的实验。(出示提前二天、四天、六天做的实验样本)这些实验告诉我们,静放的时间越长,界面变得越模糊不清,彼此进入对方越深。
固体之间也会发生扩散现象。将铅片和金片紧压在一起,放置5年后再将它们分开,可以看到它们相渗入约1毫米。其实在日常生活中,我们也观察到过固体的扩散。煤矸石有的原来就是石炭岩,由于长期地跟煤挤压在一起,它的内部也变黑了。
大量事实说明气体、液体、固体都有扩散现象,即使在日常生活中大家也能找到许多事例。例如,某同学擦点清凉油,周围同学就能闻到清凉油味。
扩散现象表明:一切物体的分子都在不停地做无规则的运动。只有分子不停地运动才能相互进入对方。同时也说明分子不是紧密地挤在一起,而是彼此间存有间隙。
另有,
根据爱因斯坦的质能方程E=MC*2
也就是说只要物质存在就具有能量,当物质绝对静止时,只有温度达到绝对零度,也就是说达到-273.15度,物质才是正真的静止,但此时能量为零,也就是说物质将消失 。
所以只要物质存在就具有能量,只要有能量就不会达到绝对零度,达不到绝对零度就不会绝对静止,因此物质都是运动的,因为当它不运动时即消失。这就像是光子,光子是有能量的,当它运动时,也是有质量的,但是一旦停止运动,光子就不服存在了,比如你抓一把光子,是抓不到的,因为它此时已经不存在了!可是太阳帆就是利用光子撞击,产生光压,驱动前进的!
㈡ 把分子和原子像计算机一样用来编程,是否可以造物。
分子和原子是不能编程的。它们是构成物质的两种微粒(物质还有可能是离子构成的,如大部分金属氧化物和盐类)。
一、分子。
分子是物质中能够独立存在的相对稳定并保持该物质物理化学特性的最小微粒。分子由原子构成,原子通过一定的作用力,以一定的次序和排列方式结合成分子。以水分子为例,如果把一烧杯水不断分离下去,直至不破坏水的特性,这时出现的最小微粒是由两个氢原子和一个氧原子构成的一个水分子(H2O)。一个水分子可用电解法再分为两个氢原子和一个氧原子,但这时它的特性已和水完全不同了。有的分子只由一个原子构成,称单原子分子,如氦和氩等分子属此类,这种单原子分子既是原子又是分子。由两个原子构成的分子称双原子分子,例如氧分子(O2)和一氧化碳分子(CO):一个氧分子由两个氧原子构成,为同核双原子分子;一个一氧化碳分子由一个氧原子和一个碳原子构成,为异核双原子分子。由两个以上的原子组成的分子统称多原子分子。分子中的原子数可为几个、十几个、几十个乃至成千上万个。例如一个二氧化碳分子(CO2)由一个碳原子和两个氧原子构成。一个苯分子包含六个碳原子和六个氢原子(C6H6)。
分子结构涉及原子在空间中的位置,与键结的化学键种类有关,包括键长、键角以及相邻三个键之间的二面角。
原子在分子中的成键情形与空间排列:分子结构对物质的物理与化学性质有决定性的关系。最简单的分子是氢分子,1克氢气包含1023个以上的氢分子。一个水分子中2个氢原子都连接到一个中心氧原子上,所成键角是104.5°。分子中原子的空
阿司匹林分子渗透模型
间关系不是固定的,除了分子本身在气体和液体中的平动外,分子结构中的各部分也都处于连续的运动中。因此分子结构与温度有关。分子所处的状态(固态、液态、气态、溶解在溶液中或吸附在表面上)不同,分子的精确尺寸也不同。
因尚无真正适用的分子结构理论,复杂分子的细致结构不能预言,只能从实验测得。量子力学认为,原子中的轨道电子具有波动性,用数学方法处理电子驻波(原子轨道)就能确定原子间或原子团间键的形成方式。原子中的电子轨道在空间重叠愈多,形成的键愈稳定。量子力学方法是建立在实验数据和近似的数学运算(由高速电子计算机进行运算)相结合的基础上的,对简单的体系才是精确的,例如对水分子形状的预言。另一种理论是把分子看成一个静电平衡体系:电子和原子核的引力倾向于最大,电子间的斥力倾向于最小,各原子核和相邻原子中电子的引力也是很重要的。为了使负电中心的斥力减至最小,体系尽可能对称的排列,所以当体系有2个电子对时,它们呈线型排列(π),如乙炔;有3个电子对时呈三角平面排列,键角3π/2,如乙烯。有些分子是由一个原子构成的,如氦气、氖气、氩气等,是无化学键的。
1.分子之间有间隔。例如:取50毫升酒精和50毫升水,混合之后,体积小于100毫升。就好像一碗芝麻与一碗黄豆混合时,细小的芝麻粒钻进颗粒较大的黄豆的间隙中,混合后占有的体积小于两碗。
2.一切构成物质的分子都在永不停息地做无规则的运动。温度越高,分子扩散越快,固、液、气中,气体扩散最快。由于分子的运动跟温度有关,所以这种运动叫做分子的热运动。例如:天气热时衣服容易晒干
3.一般分子直径的数量级为10^-10m。
4.分子很小,但有一定的体积和质量。
5.同种物质的分子性质相同,不同种物质的分子性质不同。
分子的构型和构象相同成分的分子中,若原子的排列次序和排列方式不同,可形成不同的分子。例如两个碳原子、六个氢原子和一个氧原子,可以排列为乙醇分子,也可以排列为二甲醚分子,它们的结构式所示分子的结构式反映分子内部原子的排列次序。组成分子的成分相同,而排列次序不同,形成两种或两种以上的分子,这种现象称为同分异构现象,这些成分相同结构不同的分子称为同分异构体。
要反映分子中各种原子的真实数量,就要利用化学式。例如乙烯和丙烯的化学式分别为C2H4和C3H6。但化学式相同并不代表两种分子是一样的物质的分子,因为分子中原子的排列和组合,亦即分子的结构,也是决定分子性质的要素。同样的原子但排列不同的分子叫同分异构体。同分异构体有同一化学公式但因不同结构的关系有不同的特质。立体异构体是一种特别的异构体,它们可以有很相似的物理及化学性质,而同时有十分不同的生物化学性质。
由量子力学的定律的演算,分子有固定的平衡几何状态——键的长度和之间的角度。纯物质都是由相同几何结构的分子组合而成的。分子的化学式和结构是决定它的特质,尤其是它的化学活性的两要素。
二、原子。
原子(atom)指化学反应不可再分的基本微粒,原子在化学反应中不可分割。但在物理状态中可以分割。原子由原子核和绕核运动的电子组成。原子构成一般物质的最小单位,称为元素。已知的元素有118种。因此具有核式结构。
原子是一种元素能保持其化学性质的最小单位。一个正原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。而负原子的原子核带负电,周围的负电子带正电。正原子的原子核由带正电的质子和电中性的中子组成。负原子原子核中的反质子带负电,从而使负原子的原子核带负电。当质子数与电子数相同时,这个原子就是电中性的;否则,就是带有正电荷或者负电荷的离子。根据质子和中子数量的不同,原子的类型也不同:质子数决定了该原子属于哪一种元素,而中子数则确定了该原子是此元素的哪一个同位素。[2] 原子构成分子而分子组成物质中同种电荷相互排斥,不同种电荷相互吸引。
原子直径的数量级大约是10⁻¹⁰m。原子的质量极小,一般为-27次幂,质量主要集中在质子和中子上。原子核外分布着电子,电子跃迁产生光谱,电子决定了一个元素的化学性质,并且对原子的磁性有着很大的影响。所有质子数相同的原子组成元素,每种元素大多有一种不稳定的同位素,可以进行放射性衰变。
原子最早是哲学上具有本体论意义的抽象概念,随着人类认识的进步,原子逐渐从抽象的概念逐渐成为科学的理论。原子核以及电子属于微观粒子,构成原子。而原子又可以构成分子。
化学变化中的最小微粒。
人们以前认为原子是构成物质的最小粒子,所以原子在希腊文的含义是“不可分割的”,但其实,原子又可以分为原子核与核外电子,原子核又由质子和中子组成,而质子数正是区分各种不同元素的依据。质子和中子还可以继续再分。所以原子不是构成物质的最小粒子,但原子是化学反应中的最小粒子。
①原子的质量非常小。
②不停地作无规则运动。
③原子间有间隔。
④同种原子性质相同,不同种原子性质不相同。
原子是一种元素能保持其化学性质的最小单位。一个原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。原子核由带正电的质子和电中性的中子组成。原子是化学变化的最小粒子,分子是由原子组成的,许多物质是由原子直接构成的。
原子的英文名是从希腊语转化而来,原意为不可切分的。很早以前,希腊和印度的哲学家就提出了原子的不可切分的概念。17和18世纪时,化学家发现了物理学的根据:对于某些物质,不能通过化学手段将其继续的分解。19世纪晚期和20世纪早期,物理学家发现了亚原子粒子以及原子的内部结构,由此证明原子并不是不能进一步切分。量子力学原理能够为原子提供很好的模型。
行星模型由卢瑟福在提出,以经典电磁学为理论基础,主要内容有:
①原子的大部分体积是空的。
②在原子的中心有一个体积很小、密度极大的原子核。
③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。带负电的电子在核空间进行高速的绕核运动。
原子尽管很小,用化学方法不能再分,但用其他方法仍然可以再分,因为原子也有一定的构成。原子是由中心的带正电的原子核和核外带负电的电子构成的(反物质相反),原子核是由质子和中子两种粒子构成的,电子在核外较大空间内做高速运动。
电子是最早发现的亚原子粒子,到目前为止,电子是所有粒子中最轻的,只有9.11×10⁻³¹kg,为氢原子的[1/1836.152701(37)],是密立根在1910年前后通过着名的“油滴实验”做出的。电子带有一个单位的负电荷,即4.8×10⁻¹⁹静电单位或1.6×10⁻¹⁹库伦,其体积因为过于微小,现有的技术已经无法测量。
电子具有波粒二象性,不能像描述普通物体运动那样,肯定他在某一瞬间处于空间的某一点,而只能指出它在原子核外某处出现的可能性(即几率)的大小。电子在原子核各处出现的几率是不同的,有些地方出现的几率大,有些地方出现的几率很小,如果将电子在核外各处出现的几率用小黑点描绘出来(出现的几率越大,小黑点越密),那么便得到一种略具直观性的图像。这些图像中,原子核仿佛被带负电荷的电子云物所笼罩,故称电子云。
原子中所有的质子和中子结合起来就形成了一个很小的原子核,它们一起也可以被称为核子。原子核的半径约等于1.07×A^1/3 fm,其中A是核子的总数。原子半径的数量级大约是105fm,因此原子核的半径远远小于原子的半径。核子被能在短距离上起作用的残留强力束缚在一起。当距离小于2.5fm的时候,强力远远大于静电力,因此它能够克服带正电的质子间的相互排斥。
原子核由质子与中子组成(氢原子核只有一个质子),质子由两个上夸克和一个下夸克组成,带一个单位正电荷,质量是电子质量的1836.152701(37)倍,为1.6726231(10)×10⁻²⁷kg,然而部分质量可以转化为原子结合能。拥有相同质子数的原子是同一种元素,原子序数=质子数=核电荷数=核外电子数。
中子由一个上夸克和两个下夸克组成,两种夸克的电荷相互抵销,所以中子不显电性,但,认为“中子不带电”的观点是错误的。
而对于某种特定的元素,中子数是可以变化的,拥有不同中子数的同种元素被称为同位素。中子数决定了一个原子的稳定程度,一些元素的同位素能够自发进行放射性衰变。
质量数(mass number)——由于质子与中子的质量相近且远大于电子,所以用原子的质子和中子数量的总和定义相对原子质量,称为质量数。
原子的静止质量通常用统一原子质量单位(u)来表示,也被称作道尔顿(Da)。这个单位被定义为电中性的碳12原子质量的十二分之一,约为1.66×10⁻²⁷kg。氢最轻的一个同位素氕是最轻的原子,重量约为1.007825。最重的稳定原子是铅-208,质量为207.9766521。
摩尔的定义是对于任意一种元素,一摩尔总是含有同样数量的原子,约为6.022×10²³个
例如,氢元素的相对原子质量为1,一摩尔氢原子的质量就为(1.66×10⁻²⁷x6.022×10²³=9.99652x10⁻⁴≈10x10⁻⁴=0.001kg)0.001kg,也就是1克。例如,碳-12的原子质量是12u,一摩尔碳的质量则是0.012kg。
有些物质,如金属单质(例:铁、铜、铝等)、少数非金属单质(例:金刚石、石墨、红磷等)、稀有气体(例:氦气、氖气、氩气)等都是由原子直接构成的。
原子没有一个精确定义的最外层,通常所说的原子半径是根据相邻原子的平均核间距测定的。
共价半径
我们测得氯气分子中两个Cl原子的核间距为1.988Α,就把此核间距的一半,即0.994Α定为氯原子的半径,此半径称为共价半径。共价半径为该元素单质键长的一半。
金属半径
另外,我们也可以测得金属单质比如铜中相邻两个铜原子的核间距,其值的一半称为金属半径[14] 。
范德华半径
指在分子晶体中,分子间以范德华力结合,如稀有气体相邻两原子核间距的一半。
在元素周期表中,原子的半径变化的大体趋势是自上而下增加,而从左至右减少。因此,最小的原子是氢,半径为0.28Α;最大的原子是铯,半径为2.655Α。因为这样的尺寸远远小于可见光的波长(约400~700nm),所以不能够通过一般的光学显微镜或电子显微镜来看到。然而,使用扫描隧道显微镜,我们能够看到单个原子。
希望我能帮助你解疑释惑。
㈢ 分子运动
根据热力学第零定律可以推导出 在热力学0度时物质的熵为0 出于绝对规则 运动停止 只有一种状态 但是热力学0度不可能达到 所以不可能使其停止运动 只能减到很慢很慢
㈣ 请解释一下分子运动是怎样运动的
分子永不停息地做无规则的运动;分子间有相互作用的引力和斥力. 固体:固体分子间距离很小,分子间相互作用力很大,固体分子只能在各自的平衡位置附近做无规则的振动. 气体:气体分子间距离较大,(大约是分子直径10倍或更大)分子间作用力很小,可认为气体分子除了相互碰撞或跟容器壁碰撞是不受其他力作用的.气体分子可在空间到处移动,能充满它所能到达的全部空间. 液体:液体分子间距离较接近固体,分子间作用力比固体小.液体分子也在平衡位置附近做无规则的振动,但是与固体不同的是:液体分子振动的平衡位置是可以移动的
㈤ 物理学中关于分子运动论
物质是由分子组成的,一切物质的分子都在不停地作无规则的运动,这种运动叫做分子热运动。温度越高,热运动越剧烈。分子之间既存在引力又存在斥力。
㈥ 什么是分子运动
分子运动又叫分子热运动,是指一切物质的分子都在不停地做无规则的运动.分子的热运动与温度有关,温度越高,热运动就越剧烈.分子的热运动是微观的,我们用肉眼无法观察,只能借助一些表象来了解.
㈦ 分子运动定义
分子的存在形式可以为气态、液态或固态。分子除具有平移运动外,还存在着分子的转动和分子内原子的各种类型的振动。固态分子内部的振动和转动的幅度,比气体和液体中分子的平动和转动幅度小得多,分子的这种内部运动,并不会破坏分子的固有特性。通常所说的分子结构,是这些原子处在平衡位置时的结构。分子的内部运动,决定分子光谱的性质,因而利用分子光谱,可以研究分子内部运动情况。 分子的构型和构象相同成分的分子中,若原子的排列次序和排列方式不同,可形成不同的分子。例如C2H6O分子可以排列为乙醇分子,也可以排列为二甲醚分子,它们的结构式所示分子的结构式反映分子内部原子的排列次序。组成分子的成分相同,而排列次序不同,形成两种或两种以上的分子,这种现象称为同分异构现象,这些成分相同结构不同的分子称为同分异构体。
对有些分子,当它的构型确定时,分子的形状大小也就确定了,例如水分子、甲烷分子、苯分子等。有些分子在一定的构型条件下,分子的形状还会随原子的相对位置而改变。例如乙烷(C2H6)分子在相同的连接次序及双原子分子纯转动光谱相同的键长键角数据下,还可以有交叉式(图3之a)和重叠式(图3之b)两种不同形状,这种情况称为分子的构象。不同构象的分子,能量有一定差别,它们的对称性亦不同,对于乙烷分子,常温下交叉式的构象比较稳定。