GPU在线编译离线编译
国内在GPU通用计算方面的研究也在一些科研机构和院校逐步开展起来。2004年,清华大学利用GPU的并行计算能力和数据流处理能力,在GPU上实现了一种新的辐射度计算方法,并实现了Jacobi迭代法快速求解线性方程组。另外,中科院计算技术研究所、华中科技大学、西南交通大学等也相继针对特定应用在GPU上进行了实验验证。 在GPU通用计算的软件开发环境方面,OpenGL作为事实上的工业标准已为学术界和工业界所普遍接受,其中包括了GPU厂商以及OpenGL架构委员会(ARB)所扩充的函数,以此来实现GPU厂商提供的新功能[14]。DirectX则根据GPU新产品功能的扩充与进展及时的发布新的版本。二者在实现 GPU通用计算方面都需要使用者非常熟悉GPU图形绘制的原理和硬件结构等许多具体问题。
Ⅱ 如何在Mac电脑上面编译GPU版本TensorFlow
在Mac电脑上面编译GPU版本TensorFlow的方法
基本使用
使用 TensorFlow, 你必须明白 TensorFlow:
使用图 (graph) 来表示计算任务.
在被称之为 会话 (Session) 的上下文 (context) 中执行图.
使用 tensor 表示数据.
通过 变量 (Variable) 维护状态.
使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
Ⅲ 如何在Mac电脑上面编译GPU版本TensorFlow
普通电脑PC怎样跑TensorFlow的GPU模式
在Mac电脑上面编译GPU版本TensorFlow的方法
基本使用
使用 TensorFlow, 你必须明白 TensorFlow:
使用图 (graph) 来表示计算任务.
在被称之为 会话 (Session) 的上下文 (context) 中执行图.
使用 tensor 表示数据.
Ⅳ cuda 怎么在分配gpu程序编译
点击开始,在搜索栏中输入mstsc.exe打开远程桌面连接,运行 。右键单击桌面的电脑,点击属性,选择远程设置,选择允许运行任意版本远程桌面的计算机连接开通远程功能。然后打开控制面板-用户账户和家庭安全功能,并设置登录远程桌面的账户密码。
Ⅳ nvidia/cuda 公开源中的devel和runtime有什么区别
从很多方面来看,CUDA和OpenCL的关系都和DirectX与OpenGL的关系很相像。如同DirectX和OpenGL一样,CUDA和OpenCL中,前者是配备完整工具包、针对单一供应商(NVIDIA)的成熟的开发平台,后者是一个开放的标准。
虽然两者抱着相同的目标:通用并行计算。但是CUDA仅仅能够在NVIDIA的GPU硬件上运行,而OpenCL的目标是面向任何一种Massively Parallel Processor,期望能够对不同种类的硬件给出一个相同的编程模型。由于这一根本区别,二者在很多方面都存在不同:
1)开发者友好程度。CUDA在这方面显然受更多开发者青睐。原因在于其统一的开发套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常丰富的库(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA编译器)所具备的PTX(一种SSA中间表示,为不同的NVIDIA GPU设备提供一套统一的静态ISA)代码生成、离线编译等更成熟的编译器特性。相比之下,使用OpenCL进行开发,只有AMD对OpenCL的驱动相对成熟。
2)跨平台性和通用性。这一点上OpenCL占有很大优势(这也是很多National Laboratory使用OpenCL进行科学计算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在内的多类处理器,并能支持运行在CPU的并行代码,同时还独有Task-Parallel Execution Mode,能够更好的支持Heterogeneous Computing。这一点是仅仅支持数据级并行并仅能在NVIDIA众核处理器上运行的CUDA无法做到的。
3)市场占有率。作为一个开放标准,缺少背后公司的推动,OpenCL显然没有占据通用并行计算的主流市场。NVIDIA则凭借CUDA在科学计算、生物、金融等领域的推广牢牢把握着主流市场。再次想到OpenGL和DirectX的对比,不难发现公司推广的高效和非盈利机构/标准委员会的低效(抑或谨慎,想想C++0x)。
很多开发者都认为,由于目前独立显卡市场的萎缩、新一代处理器架构(AMD的Graphics Core Next (GCN)、Intel的Sandy Bridge以及Ivy Bridge)以及新的SIMD编程模型(Intel的ISPC等)的出现,未来的通用并行计算市场会有很多不确定因素,CUDA和OpenCL都不是终点,我期待未来会有更好的并行编程模型的出现(当然也包括CUDA和OpenCL,如果它们能够持续发展下去)。
Ⅵ OpenGL有没有类似DX的Shader离线编译
目前没有。因为OGL核心没有asm/binary级别的shader。
Ⅶ 如何在Mac电脑上面编译GPU版本TensorFlow
确定你的Mac是Nvidia显卡,且compute capabilities >= 3.0,点这里查看 你的显卡型号是否支持
确保你的显存至少1GB以上(Mac即使是N卡,内存都少得可怜,我的GT640M只有512M,所以后面跑CNN基本都会OOM)
编译TensorFlow需要安装Xcode(如果安装CUDA 7.5.27,可以用Xcode7.3,否者只能用7.2版本)
假定大家的Mac已经安装了Homebrew(没安装的人点这里安装)
在后续安装过程中有些包下载会非常慢,甚至被墙,所以你最好有VPN,如果不想花钱可以用免费的Lantern