当前位置:首页 » 编程软件 » 编程算法模式

编程算法模式

发布时间: 2022-06-24 22:45:45

❶ WIMP编程模式是什么

一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点
二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。
三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。
四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。
五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。
行为型有:
六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。
七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。
八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。
九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。
十、State,状态模式:允许对象在其内部状态改变时改变他的行为。对象看起来似乎改变了他的类。
十一、Strategy,策略模式:定义一系列的算法,把他们一个个封装起来,并使他们可以互相替换,本模式使得算法可以独立于使用它们的客户。
十二、China of Responsibility,职责链模式:使多个对象都有机会处理请求,从而避免请求的送发者和接收者之间的耦合关系
十三、Mediator,中介者模式:用一个中介对象封装一些列的对象交互。
十四、Visitor,访问者模式:表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变各元素类的前提下定义作用于这个元素的新操作。
十五、Interpreter,解释器模式:给定一个语言,定义他的文法的一个表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。
十六、Memento,备忘录模式:在不破坏对象的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。
结构型有:
十七、Composite,组合模式:将对象组合成树形结构以表示部分整体的关系,Composite使得用户对单个对象和组合对象的使用具有一致性。
十八、Facade,外观模式:为子系统中的一组接口提供一致的界面,fa?ade提供了一高层接口,这个接口使得子系统更容易使用。
十九、Proxy,代理模式:为其他对象提供一种代理以控制对这个对象的访问
二十、Adapter,适配器模式:将一类的接口转换成客户希望的另外一个接口,Adapter模式使得原本由于接口不兼容而不能一起工作那些类可以一起工作。
二十一、Decrator,装饰模式:动态地给一个对象增加一些额外的职责,就增加的功能来说,Decorator模式相比生成子类更加灵活。
二十二、Bridge,桥模式:将抽象部分与它的实现部分相分离,使他们可以独立的变化。
二十三、Flyweight,享元模式

❷ 计算机编程常用算法有哪些

贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。

模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html

❸ 编程的基础算法有哪些

1、二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^(i 1)个结点。

深度为k的二叉树至多有2^k 1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。二叉树算法常被用于实现二叉查找树和二叉堆。



递归算法能够解决的问题

数据的定义是按递归定义的。如Fibonacci函数。

问题解法按递归算法实现。如Hanoi问题。

数据的结构形式是按递归定义的。如二叉树、广义表等。

❹ 编程语言都有哪些算法

(一)基本算法 : 1.枚举 2.搜索: 深度优先搜索 广度优先搜索 启发式搜索 遗传算法 (二)数据结构的算法 (三)数论与代数算法 (四)计算几何的算法:求凸包 (五)图论 算法: 1.哈夫曼编码 2.树的遍历 3.最短路径 算法 4.最小生成树 算法 5.最小树形图 6.网络流 算法 7.匹配算法 (六)动态规划 (七)其他: 1.数值分析 2.加密算法 3.排序 算法 4.检索算法 5.随机化算法

希望采纳

❺ 编程模式指的是什么

各种网站上面最常见的就是23种设计模式
我就说几个好了,简单工厂模式,工厂模式,装饰者模式,责任链模式等等
我把别人的贴过来算了。。。

设计模式主要分三个类型:创建型、结构型和行为型。
其中创建型有:
一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点
二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。
三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。
四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。
五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。
行为型有:
六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。
七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。
八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。
九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。
十、State,状态模式:允许对象在其内部状态改变时改变他的行为。对象看起来似乎改变了他的类。
十一、Strategy,策略模式:定义一系列的算法,把他们一个个封装起来,并使他们可以互相替换,本模式使得算法可以独立于使用它们的客户。
十二、China of Responsibility,职责链模式:使多个对象都有机会处理请求,从而避免请求的送发者和接收者之间的耦合关系
十三、Mediator,中介者模式:用一个中介对象封装一些列的对象交互。
十四、Visitor,访问者模式:表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变各元素类的前提下定义作用于这个元素的新操作。
十五、Interpreter,解释器模式:给定一个语言,定义他的文法的一个表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。
十六、Memento,备忘录模式:在不破坏对象的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。
结构型有:
十七、Composite,组合模式:将对象组合成树形结构以表示部分整体的关系,Composite使得用户对单个对象和组合对象的使用具有一致性。
十八、Facade,外观模式:为子系统中的一组接口提供一致的界面,fa?ade提供了一高层接口,这个接口使得子系统更容易使用。
十九、Proxy,代理模式:为其他对象提供一种代理以控制对这个对象的访问
二十、Adapter,适配器模式:将一类的接口转换成客户希望的另外一个接口,Adapter模式使得原本由于接口不兼容而不能一起工作那些类可以一起工作。
二十一、Decrator,装饰模式:动态地给一个对象增加一些额外的职责,就增加的功能来说,Decorator模式相比生成子类更加灵活。
二十二、Bridge,桥模式:将抽象部分与它的实现部分相分离,使他们可以独立的变化。
二十三、Flyweight,享元模式

❻ 云计算通常采用什么编程模式

1)MapRece

MapRece是Google公司的Jeff Dean等人提出的编程模型,用于大规模数据的处理和生成。从概念上讲,MapRece处理一组输入的key/value对(键值对),产生另一组输出的键值对。当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Rece(化简)函数,用来保证所有映射的键值对中的每一个共享相同的键组。程序员只需要根据业务逻辑设计Map和Rece函数,具体的分布式、高并发机制由MapRece编程系统实现。

相信大家对MapRece相关机制已经比较熟悉,这里不做更深入的阐述。

MapRece在Google得到了广泛应用,包括反向索引构建、分布式排序、Web访问日志分析、机器学习、基于统计的机器翻译、文档聚类等。

Hadoop——作为MapRece的开源实现——得到了Yahoo!、Facebook、IBM等大量公司的支持和应用。

2)Dryad

Dryad是Microsoft设计并实现的允许程序员使用集群或数据中心计算资源的数据并行处理编程系统。从概念上讲,一个应用程序表示成一个有向无环图(Directed Acyclic Graph,DAG)。顶点表示计算,应用开发人员针对顶点编写串行程序,顶点之间的边表示数据通道,用来传输数据,可采用文件、TCP管道和共享内存的FIFO等数据传输机制。Dryad类似Unix中的管道。如果把Unix中的管道看成一维,即数据流动是单向的,每一步计算都是单输入单输出,整个数据流是一个线性结构,那么Dryad可以看成是二维的分布式管道,一个计算顶点可以有多个输入数据流,处理完数据后,可以产生多个输出数据流,一个Dryad作业是一个DAG。
3)Pregel

Pregel是Google提出的一个面向大规模图计算的通用编程模型。许多实际应用中都涉及到大型的图算法,典型的如网页链接关系、社交关系、地理位置图、科研论文中的引用关系等,有的图规模可达数十亿的顶点和上万亿的边。Pregel编程模型就是为了对这种大规模图进行高效计算而设计。

❼ 编程算法是什么

程序算法是对特定问题求解过程的描述,是指令的有限序列,每条指令完成一个或多个操作。通俗地讲,就是为解决某一特定问题而采取的具体有限的操作步骤。

在有限的操作步骤内完成。有穷性是算法的重要特性,任何一个问题的解决不论其采取什么样的算法,其终归是要把问题解决好。如果一种算法的执行时间是无限的,或在期望的时间内没有完成,那么这种算法就是无用和徒劳的,我们不能称其为算法。

相关信息:

算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做T(n)=Ο(f(n));因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

❽ 编程算法有哪些

具体算法如下:

1、快速排序算法快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

2、堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

3、归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。

4、二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束。

5、BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。

6、深度优先搜索算法,是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。

❾ 编程中的算法是指什么

算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
</FIELDSET>比如你从b地到a地,有许多条路可以走,找出一条最短的路的方法就是一个算法。
编程中解决一个问题同样有很多不同方法,每个方法就是一个算法。
算法里面总有一个最好的,效率最高的,能否做到用效率最高的方法来完成任务,就是一个程序员水平高低的表现之一。

❿ 求编程领域上一些经典算法同时也是程序员必须掌握的算法

这是我在一个论坛里看到的,你也参考参考吧。C++的虚函数
======================
C++使用虚函数实现了其对象的多态,C++对象的开始四个字节是指向虚函数表的指针,其初始化顺序是先基类后派生类,所以该虚函数表永远指向最后一个派生类,从而实现了相同函数在不同对象中的不同行为,使得对象既有共性,又有其个性。

内存池分配、回收之伙伴算法
=======================
伙伴算法是空闲链表法的一个增强算法,依次建立2^0\2^1\2^2\2^3...2^n大小的 内存块空闲链表,利用相邻内存块的伙伴性质,很容易将互为伙伴的内存块进行合并移到相应的空闲链表或将一块内存拆分成两块伙伴内存,一块分配出去,另一块挂入相应空闲链表,使得内存的分配和回收变得高效。

AVL树
=======================
AVL树是一个平衡二叉树,其中序遍历是从小到大排序的,该结构插入节点和检索非常高效,被广泛应用

快速排序
=======================
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。效率非常高

密码学之非对称加密协议(公钥、私钥加密协议)
======================
非对称加密算法需要两个密钥,用其中一个加密产生的密文,只能通过另外一个密钥解密,密钥持有者A可以将其中一个公开,称为公用密钥,另外一个秘密保存称为私钥,这样当某人B想给A传一封秘信时,只要将密信使用A的公钥加密后,就可以放心使用各种信道将迷信传给A了,因为该密信只有A可以解密,第三者截取因为无法解密而毫无意义。
该算法很好地解决了密钥的安全传递的问题,因为公钥和加密算法都是公开的,私钥不需要传输。

密码学之数字签名协议(身份鉴别、防抵赖)
======================
数字签名也是建立在非对称加密基础之上的,如果A君用它的私钥将文件加密后在发布,A君就无法抵赖该文件是其发布的,因为其他人能通过A君的公钥将文件解密就说明,如果算法可靠,该文件一定是A君用其私钥加密的。
由于非对称加密算法的加密和解密很慢,现在的数字签名并非是将其要发布的信息用其私钥加密,而是先用一个单项散列算法如(MD5)产生一个该信息的比较短的指纹(hash值),对其指纹用其私钥加密后和信息一并发布,同样达到了防抵赖的作用。

无回溯字符串模式匹配-kmp算法
======================
他是根据子串的特征,当匹配失败时,不需要回溯,而是直接将字串向后滑动若干个字节,继续匹配,极大提高了匹配速度。该算法被广泛使用。详细请参考数据结构教程。

最小路径选路-迪杰斯特拉算法、弗洛伊德算法
======================
学习数据结构的时候,印象最深的就要算kmp算法和最小路径算法了,因为理解他们比较费脑子,我是不可能发明这些算法了,发明他们的都是天才,呵呵。
使用最短路径的算法曾经帮人写过一个小东西,还是很有效的,记得是使用的弗洛伊德算法的一个变种,要详细了解的朋友可以查找相关资料,想将他们使用在你的项目中,代码直接从教科书上抄就可以了,不需要理解。

tcp协议之-nagle算法
======================
tcp、ip中令人叫绝的想法很多,印象最深的要算nagle算法了。
tcp出于效率和流量控制的考虑,发送端的数据不是产生多少就马上发送多少,一般是等到数据集聚到发送缓冲区长度的一半或者数据达到最大tcp数据包数据部分长度(好像是65515)才启动发送,而且还要看接受端可用缓冲区的大小,如果接受端产生一个回应报文通知发送端没有接受空间了,发送端哪怕缓冲区已经满了,也不会启动发送,直到接受端通告发送端其已经有了接受数据的空间了。
这样就有一个问题,假如发送端就是要发送一个小报文(比如10个字节),然后等待对方的回应。按照上面的方案,tcp会一直等数据收集到一定量才发送,于是矛盾就产生了。应用层不再发数据,tcp等不到足够的数据不会将10个字的数据发送到网卡,接收端应用层收不到数据就不会回应发送端。
你也可能说,可以让修改发送端发送条件,不一定要等到足够的数据再发送,为了效率考虑,可以考虑延时一定的时间,比如说1秒,如果上层还没有数据到来,就将发送缓冲中的数据发出去。当然这样也是可行的,尽管应用端白白等了1秒钟啥也没干,呵呵。
其实nagle算法很好解决了该问题,它的做发是链接建立后的第一次发送不用等待,直接将数据组装成tcp报文发送出去,以后要么等到数据量足够多、要么是等到接受方的确认报文,算法及其简单,而且很好解决了上面的矛盾。

socket之io模型设计
======================
windows下socket有两种工作方式:
1)同步方式
2)异步方式

同步socket又有两种工作模式:
1)阻塞模式
2)非阻塞模式

阻塞模式是最简单的工作模式,以tcp的发送数据为例,如果发送缓冲区没有空间,send调用就不会返回,一直要等到能够发出一点数据为止,哪怕是一个字节,但是send返回并不表示我要发送的数据已经全部提交给了tcp,所以send返回时要检查这次发送的数量,调整发送缓冲指针,继续发送,直到所有数据都提交给了系统。
由于其阻塞的特性,会阻塞发送线程,所以单线程的程序是不适合使用阻塞模式通信的,一般使用一个连接一个线程的方法,但是这种方式对于要维护多个连接的程序,是个不好的选择,线程越多,开销越大。

同步非阻塞模式的socket不会阻塞通信线程,如果发送缓冲区满,send调用也是立刻返回,接受缓冲区空,recv也不会阻塞,所以通信线程要反复调用send或recv尝试发送或接收数据,对cpu是很大的浪费。
针对非阻塞的尴尬,接口开发人员发明了三种io模型来解决该问题:
1)选择模型(select)
2)异步选择模型(AsyncSelect)
3)事件选择模型(EventSeselect)
其思想是根据io类型,预先查看1个或n个socket是否能读、写等。
其select本身来说,select是阻塞的,可以同时监视多个socket,只要所监视的其中一个socket可以读、写,secect调用才返回
异步选择模型其select是异步的(异步是不会阻塞的),是将监视任务委托给系统,系统在socket可读、写时通过消息通知应用程序。有一点需要说明,假如应用程序已经有很多数据需要发送,当收到可写通知时,一定要尽量多地发送数据,直到发送失败,lasterror提示“将要阻塞”,将来才可能有新的可写通知到来,否则永远也不会有。
事件选择模型也是将监视socket状态的工作委托给系统,系统在适当的时候通过事件通知应用程序socket可以的操作。

除了同步工作方式外,还有一种叫异步工作方式
异步工作方式是不会阻塞的,因为是将io操作本身委托给系统,系统在io操作完成后通过回调例程或事件或完成包通知应用程序
异步工作方式有两种io模型和其对应,其实这两种模型是window是异步io的实现:
1)重叠模型
2)完成端口

重叠模型通过事件或回调例程通知应用程序io已经完成
完成端口模型比较复杂,完成端口本身其实是一个io完成包队列。
应用程序一般创建若干个线程用来监视完成端口,这些线程试图从完成端口移除一个完成包,如果有,移除成功,应用程序处理该完成包,否则应用程序监视完成端口的线程被阻塞。

select模型是从UNIX上的Berkeley Software Distribution(BSD)版本的套接字就实现了的,其它四种io模型windows发明的,在windows中完成端口和异步选择模型是使用比较广泛的,一般分别用于服务端和客户端开发。
这五种io模型设计还是比较巧妙的:三种选择模型很好解决了“同步非阻塞”模式编程的不足;重叠模型和完成端口是windows异步io的经典实现,不局限于网络io,对文件io同样适用。

说点题外话,socket的send完成仅仅是将数据(可能是部分)提交给系统,而不是已经发送到了网卡上,更不是已经发送到了接收端。所以要知道你的数据已经发送到了对方的应用层的唯一方法是,让对方给你发送一个应对包。
发送数据要注意,对应tcp,要防止发送和接收的乱序,对于发送,一般应该为每一个链接建立一个发送队列,采用类似nagle的算法启动数据发送。
一次发送可能是你提交数据的一部分,一定要当心,否则出问题没处找去。

热点内容
脚本中new 发布:2025-02-13 21:00:11 浏览:741
什么配置的笔记本电脑能玩神武 发布:2025-02-13 20:54:40 浏览:178
挑选云服务器需要注意什么 发布:2025-02-13 20:53:31 浏览:98
加密滴胶卡 发布:2025-02-13 20:30:48 浏览:275
javalogin 发布:2025-02-13 20:25:48 浏览:427
智联招聘无法上传照片 发布:2025-02-13 20:16:03 浏览:529
python元素替换list 发布:2025-02-13 20:03:48 浏览:773
windows系统账户名和密码是多少 发布:2025-02-13 20:03:02 浏览:531
我的世界带有商店服务器好吗 发布:2025-02-13 20:02:50 浏览:616
东莞加密软件 发布:2025-02-13 20:02:05 浏览:870