自主访问控制
Ⅰ 自主访问控制的介绍
自主访问控制(Discretionary Access Control,DAC)是这样的一种控制方式,由客体的属主对自己的客体进行管理,由属主自己决定是否将自己的客体访问权或部分访问权授予其他主体,这种控制方式是自主的。也就是说,在自主访问控制下,用户可以按自己的意愿,有选择地与其他用户共享他的文件。
Ⅱ 安卓系统的自主访问控制和强制访问控制是怎么操作的
自主访问控制
自主访问的含义是有访问许可的主体能够直接或间接地向其他主体转让访问权。自主访问控制是在确认主体身份以及(或)它们所属的组的基础上,控制主体的活动,实施用户权限管理、访问属性(读、写、执行)管理等,是一种最为普遍的访问控制手段。自主访问控制的主体可以按自己的意愿决定哪些用户可以访问他们的资源,亦即主体有自主的决定权,一个主体可以有选择地与其它主体共享他的资源。
基于访问控制矩阵的访问控制表(ACL)是DAC中通常采用一种的安全机制。ACL是带有访问权限的矩阵,这些访问权是授予主体访问某一客体的。安全管理员通过维护ACL控制用户访问企业数据。对每一个受保护的资源,ACL对应一个个人用户列表或由个人用户构成的组列表,表中规定了相应的访问模式。当用户数量多、管理数据量大时,由于访问控制的粒度是单个用
户,ACL会很庞大。当组织内的人员发生能变化(升迁、换岗、招聘、离职)、工作职能发生变化(新增业务)时,ACL的修改变得异常困难。采用ACL机制管理授权处于一个较低级的层次,管理复杂、代价高以至易于出错。
DAC的主要特征体现在主体可以自主地把自己所拥有客体的访问权限授予其它主体或者从其它主体收回所授予的权限,访问通常基于访问控制表(ACL)。访问控制的粒度是单个用户。没有存取权的用户只允许由授权用户指定对客体的访问权。DAC的缺点是信息在移动过程中其访问权限关系会被改变。如用户A可将其对目标O的访问权限传递给用户B,从而使不具备对O访问权限的B可访问O。
强制访问控制
为了实现完备的自主访问控制系统,由访问控制矩阵提供的信息必须以某种形式存放在系统中。访问矩阵中的每行表示一个主体,每一列则表示一个受保护的客体,而矩阵中的元素,则表示主体可以对客体的访问模式。目前,在系统中访问控制矩阵本身,都不是完整地存储起来,因为矩阵中的许多元素常常为空。空元素将会造成存储空间的浪费,而且查找某个元素会耗费很多时间。实际上常常是基于矩阵的行或列来表达访问控制信息。
强制访问控制是“强加”给访问主体的,即系统强制主体服从访问控制政策。强制访问控制(MAC)的主要特征是对所有主体及其所控制的客体(例如:进程、文件、段、设备)实施强制访问控制。
为这些主体及客体指定敏感标记,这些标记是等级分类和非等级类别的组合,它们是实施强制访问控制的依据。系统通过比较主体和客体的敏感标记来决定一个主体是否能够访问某个客体。用户的程序不能改变他自己及任何其它客体的敏感标记,从而系统可以防止特洛伊木马的攻击。
Top Secret),秘密级(Secret),机密级(Confidential)及无级别级(Unclassified)。其级别为T>S>C>U,系统根据主体和客体的敏感标记来决定访问模式。访问模式包括:
read down):用户级别大于文件级别的读操作;
Write up):用户级别小于文件级别的写操作;
Write down):用户级别等于文件级别的写操作;
read up):用户级别小于文件级别的读操作;
自主访问控制不能抵御“特洛伊木马”攻击,而强制访问控制能够有效的防御“特洛伊木马”攻击。MAC最主要的优势是它阻止特洛伊木马的能力 一个特洛伊木马是在一个执行某些合法功能的程序中隐藏的代码,它利用运行此程序的主体的权限违反安全策略 通过伪装成有用的程序在进程中泄露信息 一个特洛伊木马能够以两种方式泄露信息: 直接与非直接泄露 前者, 特洛伊木马以这样一种方式工作, 使信息的安全标示不正确并泄露给非授权用户; 后者特洛伊木马通过以下方式非直接地泄露信息: 在返回给一个主体的合法信息中编制 例如: 可能表面上某些提问需要回答, 而实际上用户回答的内容被传送给特洛伊木马。
Ⅲ 什么是淘宝自主访问!
自主访问是指用户可以按照自己的意愿,通过在浏览器输入网址或者通过淘宝收藏夹的链接,或者通过其他推广方式的链接直接对淘宝某店铺进行访问,也就是我们通过链接进入店铺或者商品,而不是通过搜索进入。
淘宝的自主访问是淘宝店铺的一种流量来源,用户通过淘宝网内搜索、收藏夹点击、购物车点击、微淘点击等方式进入淘宝店铺。
(3)自主访问控制扩展阅读:
淘宝自主访问的几个方式:
1、店铺收藏:访客通过于收藏夹的店铺收藏进入店铺。
2、宝贝收藏:访客通过收藏的宝贝进入店铺。
3、我的淘宝首页:访客从我的淘宝首页点击进入店铺。
3、已买到商品:访客从已买到的宝贝页面点击后进入你的店铺。
4、直接访问:访客通过输入店铺地址或者通过浏览器收藏夹等直接进入你的店铺。
5、购物车:访客通过购物车进入你的店铺。
自主访问大多数都是为老客户或者有下单意愿的客户
Ⅳ 自主访问控制与强制访问控制的原理是什么有什么区别
自主访问控制(DAC)是一个接入控制服务,它执行基于系统实体身份和它们的到系统资源的接入授权。这包括在文件,文件夹和共享资源中设置许可。
强制访问控制是“强加”给访问主体的,即系统强制主体服从访问控制政策。强制访问控制(MAC)的主要特征是对所有主体及其所控制的客体(例如:进程、文件、段、设备)实施强制访问控制。为这些主体及客体指定敏感标记,这些标记是等级分类和非等级类别的组合,它们是实施强制访问控制的依据。系统通过比较主体和客体的敏感标记来决定一个主体是否能够访问某个客体。用户的程序不能改变他自己及任何其它客体的敏感标记,从而系统可以防止特洛伊木马的攻击。
强制访问控制一般与自主访问控制结合使用,并且实施一些附加的、更强的访问限制。一个主体只有通过了自主与强制性访问限制检查后,才能访问某个客体。用户可以利用自主访问控制来防范其它用户对自己客体的攻击,由于用户不能直接改变强制访问控制属性,所以强制访问控制提供了一个不可逾越的、更强的安全保护层以防止其它用户偶然或故意地滥用自主访问控制。
强制访问策略将每个用户及文件赋于一个访问级别,如,最高秘密级(Top Secret),秘密级(Secret),机密级(Confidential)及无级别级(Unclassified)。其级别为T>S>C>U,系统根据主体和客体的敏感标记来决定访问模式。访问模式包括:
下读(read down):用户级别大于文件级别的读操作;
上写(Write up):用户级别小于文件级别的写操作;
下写(Write down):用户级别等于文件级别的写操作;
上读(read up):用户级别小于文件级别的读操作;
Ⅳ 自主访问控制的概述
自主访问控制是保护系统资源不被非法访问的一种有效手段。但是这种控制是自主的,即它是以保护用户的个人资源的安全为目标并以个人的意志为转移的。
自主访问控制是一种比较宽松的访问控制,一个主题的访问权限具有传递性。
计算机信息系统可信计算基定义和控制系统中命名用户对命名客体的访问。
实施机制(例如:访问控制表)允许命名用户以用户和(或)用户组的身份规定并控制客体的共享;阻止非授权用户读取敏感信息。并控制访问权限扩散。
自主访问控制机制根据用户指定方式或默认方式,阻止非授权用户访问客体。访问控制的粒度是单个用户。没有存取权的用户只允许由授权用户指定对客体的访问权。阻止非授权用户读取敏感信息。
Ⅵ 自主访问控制和强制访问控制的区别
强制访问控制
通过无法回避的访问限制来阻止直接或间接地非法入侵。
自主访问控制
管理的方式不同就形成不同的访问控制方式。一种方式是由客体的属主对自己的客体进行管理,由属主自己决定是否将自己客体的访问权或部分访问权授予其他主体,这种控制方式是自主的,我们把它称为自主访问控制(Discretionary Access Control——DAC)。在自主访问控制下,一个用户可以自主选择哪些用户可以共享他的文件。Linux系统中有两种自主访问控制策略,一种是9位权限码(User-Group-Other),另一种是访问控制列表ACL(Access Control List)。
强制访问控制
强制访问控制(Mandatory Access Control——MAC),用于将系统中的信息分密级和类进行管理,以保证每个用户只能访问到那些被标明可以由他访问的信息的一种访问约束机制。通俗的来说,在强制访问控制下,用户(或其他主体)与文件(或其他客体)都被标记了固定的安全属性(如安全级、访问权限等),在每次访问发生时,系统检测安全属性以便确定一个用户是否有权访问该文件。其中多级安全(MultiLevel Secure, MLS)就是一种强制访问控制策略。
Ⅶ 自主访问控制与强制访问控制的区别
一、类型不同
1、自主访问控制:由《可信计算机系统评估准则》所定义的访问控制中的一种类型。
2、强制访问控制:在计算机安全领域指一种由操作系统约束的访问控制。
二、目的不同
1、自主访问控制:根据主体(如用户、进程或 I/O 设备等)的身份和他所属的组限制对客体的访问。
2、强制访问控制:目标是限制主体或发起者访问或对对象或目标执行某种操作的能力。
三、特点不同
1、自主访问控制:由客体的属主对自己的客体进行管理,由属主自己决定是否将自己的客体访问权或部分访问权授予其他主体,这种控制方式是自主的。
2、强制访问控制:每当主体尝试访问对象时,都会由操作系统内核强制施行授权规则——检查安全属性并决定是否可进行访问。任何主体对任何对象的任何操作都将根据一组授权规则(也称策略)进行测试,决定操作是否允许。
Ⅷ 自主访问控制存在哪些主要的安全性问题
从“震网”、“火焰”病毒的大规模爆发,到索尼在线被黑、CSDN数据泄露等信息安全事件的层出不穷,每一次大规模病毒、黑客攻击行为的出现,都会对用户信息系统造成严重的危害,引起了安全行业的集体反思。作为信息系统的重要组成部分,操作系统承担着连接底层硬件和上层业务应用的重任,在诸多安全事件中首当其冲,面临着巨大的安全压力。而操作系统本身在安全防护上的脆弱性,特别是系统内自主访问控制机制存在的安全隐患,使用户在面对病毒、木马及黑客攻击时显得力不从心,最终导致安全事件密集爆发的信息安全“危局”。
掀开自主访问控制的面纱
为了增强信息系统安全、可靠运行的能力,操作系统内置了一些防护措施,例如身份鉴别、访问控制、入侵防范等。其中,访问控制是计算机安全防护体系中的重要环节,包含主体、客体、控制策略三个要素。其中,主体是指可以对其他实体施加动作的主动实体,例如用户、进程等;客体包括数据、文件、程序等,是接受其他实体访问的被动实体;控制策略则定义了主体与客体相互作用的途径。简而言之,访问控制是一种通过控制策略授予、约束主体访问客体行为的安全机制。
访问控制分为三种模型,即自主访问控制(DAC)、强制访问控制(MAC)和基于角色的访问控制(RBAC)。其中,自主访问控制在C2级操作系统中应用广泛,是根据自主访问控制策略建立的一种模型,允许合法用户以用户或用户组的身份访问策略规定的客体,同时阻止非授权用户访问客体,某些用户还可以自主地把自己所拥有的客体的访问权限授予其他用户。
自主访问控制的实现方式包括目录式访问控制模式、访问控制表(ACL)、访问控制矩阵、面向过程的访问控制等,其中,访问控制表是自主访问控制机制通常采用的一种方式。访问控制表是存放在计算机中的一张表,本质上是带有访问权限的矩阵,其访问权限包括读文件、写文件、执行文件等等。在自主访问控制机制下,每个客体都有一个特定的安全属性,同时访问控制表也授予或禁止主体对客体的访问权限。在实际工作中,安全管理员通过维护访问控制表,控制用户对文件、数据等IT系统资源的访问行为,来达到安全防控的目的。
从安全性上看,现有操作系统中基于访问控制表的自主访问控制存在着明显的缺陷:一方面,超级用户(root/Administrator)权力过度集中,可以随意修客体的访问控制表,只要拥有超级管理员权限就可以对服务器所有的资源进行任意操作;另一方面,客体的属主可以自主地将权限转授给别的主体,一旦把某个客体的ACL修改权转授出去以后,拥有者便很难对自己的客体实施控制了。因此,在现有的这种访问控制模型下,操作系统存在很多安全风险。
自主访问控制下的安全风险
按照访问许可机制的不同,自主访问控制又分为三个类型,即自由型、等级型和宿主型。其中,在自由型自主访问控制机制中,不同主体之间可以自由转让客体访问控制表的修改权限,意味着任何主体都有可能对某一客体进行操作,系统安全性很难得到保障;在等级型自主访问控制机制中,用户可以将拥有修改客体访问控制表权限的主体组织成等级型结构,例如按照等级将不同的主体排列成树型结构,高等级主体自动获得低等级客体的控制权限。这种方案的优点是可以选择值得信任的人担任各级领导,从而实现对客体的分级控制,缺点是同时有多个主体有能力修改某一客体的访问权限。
从市场应用情况看,等级型自主访问控制是使用范围最为广泛的安全机制,现有C2级大型商用服务器操作系统(如AIX、HP-UX、Solaris、Windows Server、LinuxServer等)中的访问控制机制均为等级型自主访问控制,涉及金融、能源、军工等国家命脉行业。在这些系统中,位于树型结构顶端的超级用户拥有无上的权限,可以对其他用户拥有的资源进行任意修改和访问。权限的高度集中,客观上放大了系统的安全风险。针对等级型自主访问控制,攻击者可以通过暴力破解、系统漏洞利用、木马攻击等多种方式窃取管理员权限,进而实现对目标系统的完全控制。事实证明确实如此,无论是曾经肆虐全国的“灰鸽子”木马,还是震惊全球的“震网”、“火焰”等病毒,都将获得管理权限作为一种重要手段,在此基础上成功入侵系统并实施破坏行为。
完善自主访问控制机制
为了提升信息系统的安全防护能力,我国颁布了《信息安全等级保护管理办法》,并制定了一系列国家标准,为用户开展信息安全等级保护工作提供指导意义。其中,《GB/T 20272-2006信息安全技术-操作系统安全技术要求》是专门针对操作系统安全防护的国家标准,该标准在“自主访问控制”部分提出了明确的要求:“客体的拥有者应是唯一有权修改客体访问权限的主体,拥有者对其拥有的客体应具有全部控制权,但是,不充许客体拥有者把该客体的控制权分配给其他主体。”
从技术要求的细节上看,满足等级保护标准的自主访问控制机制实质上是宿主型自主访问控制。在这种机制下,用户需要对客体设置一个拥有者,并使其成为唯一有权访问该客体访问控制表的主体,确保了受保护客体访问控制表控制权的唯一性,有效规避由于系统管理员信息泄露而给系统带来的巨大危害,同时也限制了病毒对系统的破坏行为,帮助用户提升防病毒、防黑客攻击的能力。
目前,国内已经出现满足等级保护操作系统技术要求的安全产品,例如椒图科技推出的JHSE椒图主机安全环境系统(以下简称JHSE),就基于宿主型自主访问控制机制保障操作系统的安全。此外,JHSE还采用了强制访问控制模型,为访问主体和受保护的客体分配不同的安全级别属性,在实施访问控制的过程中,系统将对主体和客体的安全级别属性进行比较,之后再决定主体是否可以访问受保护的客体,从而实现了细粒度的安全访问控制机制。可以相信,随着安全技术的持续进步和用户安全意识的不断增强,操作系统将会在面对病毒、木马及黑客攻击时扭转不利局面,为整体信息系统的安全运行提供可靠支撑。