c加密算法
Ⅰ 用c语言设计一个简单地加密算,解密算法,并说明其中的原理
恰巧这两天刚看的一种思路,很简单的加密解密算法,我说一下吧。
算法原理很简单,假设你的原密码是A,用A与数B按位异或后得到C,C就是加密后的密码,用C再与数B按位异或后能得回A。即(A异或B)异或B=A。用C实现很简单的。
这就相当于,你用原密码A和特定数字B产生加密密码C,别人拿到这个加密的密码C,如果不知道特定的数字B,他是无法解密得到原密码A的。
对于密码是数字的情况可以用下面的代码:
#include <stdio.h>
#define BIRTHDAY 19880314
int main()
{
long a, b;
scanf("%ld", &a);
printf("原密码:%ld\n", a);
b = BIRTHDAY;
a ^= b;
printf("加密密码:%ld\n", a);
a ^= b; printf("解密密码:%ld\n", a);
return 0;
}
如果密码是字符串的话,最简单的加密算法就是对每个字符重新映射,只要加密解密双方共同遵守同一个映射规则就行啦。
Ⅱ DES加密算法C语言实现
#include<iostream.h>
class SubKey{ //定义子密钥为一个类
public:
int key[8][6];
}subkey[16]; //定义子密钥对象数组
class DES{
int encipher_decipher; //判断加密还是解密
int key_in[8][8]; //用户原始输入的64位二进制数
int key_out[8][7]; //除去每行的最后一位校验位
int c0_d0[8][7]; //存储经PC-1转换后的56位数据
int c0[4][7],d0[4][7]; //分别存储c0,d0
int text[8][8]; //64位明文
int text_ip[8][8]; //经IP转换过后的明文
int A[4][8],B[4][8]; //A,B分别存储经IP转换过后明文的两部分,便于交换
int temp[8][6]; //存储经扩展置换后的48位二进制值
int temp1[8][6]; //存储和子密钥异或后的结果
int s_result[8][4]; //存储经S变换后的32位值
int text_p[8][4]; //经P置换后的32位结果
int secret_ip[8][8]; //经逆IP转换后的密文
public:
void Key_Putting();
void PC_1();
int function(int,int); //异或
void SubKey_Proction();
void IP_Convert();
void f();
void _IP_Convert();
void Out_secret();
};
void DES::Key_Putting() //得到密钥中对算法有用的56位
{
cout<<"请输入64位的密钥(8行8列且每行都得有奇数个1):\n";
for(int i=0;i<8;i++)
for(int j=0;j<8;j++){
cin>>key_in[i][j];
if(j!=7) key_out[i][j]=key_in[i][j];
}
}
void DES::PC_1() //PC-1置换函数
{
int pc_1[8][7]={ //PC-1
{57, 49, 41, 33, 25, 17, 9},
{1, 58, 50, 42, 34, 26, 18},
{10, 2, 59, 51, 43, 35, 27},
{19, 11, 3, 60, 52, 44, 36},
{63, 55, 47, 39, 31, 23, 15},
{7, 62, 54, 46, 38, 30, 22},
{14, 6, 61, 53, 45, 37, 29},
{21, 13, 5, 28, 20, 12, 4}
};
int i,j;
for(i=0;i<8;i++)
for(j=0;j<7;j++)
c0_d0[i][j]=key_out[ (pc_1[i][j]-1)/8 ][ (pc_1[i][j]-1)%8 ];
}
int DES::function(int a,int b) //模拟二进制数的异或运算,a和b为整型的0和1,返回值为整型的0或1
{
if(a!=b)return 1;
else return 0;
}
void DES::SubKey_Proction() //生成子密钥
{
int move[16][2]={ //循环左移的位数
1 , 1 , 2 , 1 ,
3 , 2 , 4 , 2 ,
5 , 2 , 6 , 2 ,
7 , 2 , 8 , 2 ,
9 , 1, 10 , 2,
11 , 2, 12 , 2,
13 , 2, 14 , 2,
15 , 2, 16 , 1
};
int pc_2[8][6]={ //PC-2
14, 17 ,11 ,24 , 1 , 5,
3 ,28 ,15 , 6 ,21 ,10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20 ,13 , 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
for(int i=0;i<16;i++) //生成子密钥
{
int j,k;
int a[2],b[2];
int bb[28],cc[28];
for(j=0;j<4;j++)
for(k=0;k<7;k++)
c0[j][k]=c0_d0[j][k];
for(j=4;j<8;j++)
for(k=0;k<7;k++)
d0[j-4][k]=c0_d0[j][k];
for(j=0;j<4;j++)
for(k=0;k<7;k++){
bb[7*j+k]=c0[j][k];
cc[7*j+k]=d0[j][k];
}
for(j=0;j<move[i][1];j++){
a[j]=bb[j];
b[j]=cc[j];
}
for(j=0;j<28-move[i][1];j++){
bb[j]=bb[j+1];
cc[j]=cc[j+1];
}
for(j=0;j<move[i][1];j++){
bb[27-j]=a[j];
cc[27-j]=b[j];
}
for(j=0;j<28;j++){
c0[j/7][j%7]=bb[j];
d0[j/7][j%7]=cc[j];
}
for(j=0;j<4;j++) //L123--L128是把c0,d0合并成c0_d0
for(k=0;k<7;k++)
c0_d0[j][k]=c0[j][k];
for(j=4;j<8;j++)
for(k=0;k<7;k++)
c0_d0[j][k]=d0[j-4][k];
for(j=0;j<8;j++) //对Ci,Di进行PC-2置换
for(k=0;k<6;k++)
subkey[i].key[j][k]=c0_d0[ (pc_2[j][k]-1)/7 ][ (pc_2[j][k]-1)%7 ];
}
}
void DES::IP_Convert()
{
int IP[8][8]={ //初始置换IP矩阵
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
cout<<"你好,你要加密还是解密?加密请按1号键(输入1),解密请按2号键,并确定."<<'\n';
cin>>encipher_decipher;
char * s;
if(encipher_decipher==1) s="明文";
else s="密文";
cout<<"请输入64位"<<s<<"(二进制):\n";
int i,j;
for(i=0;i<8;i++)
for(j=0;j<8;j++)
cin>>text[i][j];
for(i=0;i<8;i++) //进行IP变换
for(j=0;j<8;j++)
text_ip[i][j]=text[ (IP[i][j]-1)/8 ][ (IP[i][j]-1)%8 ];
}
Ⅲ 用c语言设计了一个加密算法:用a代替z,用b代替y,用c代替x,……,用z代替a。
#include <stdio.h>
int main()
{
char s[100],*p;
printf("请输入字符串 : ");
gets(s);
p = s;
while(*p)
{
if((*p >= 'a') && (*p <= 'z')) /*处理小写*/
{
*p ='z' - *p + 'a';
}
if((*p >= 'A') && (*p <= 'Z')) /*处理大写,同理处理数字亦一样..自己例推*/
{
*p ='Z' - *p + 'A';
}
p++;
}
printf("转换后的字符串为 : %s\n\n",s);
return 0;
}
Ⅳ des加密算法(c/c++)
des.h文件:
#ifndefCRYPTOPP_DES_H
#defineCRYPTOPP_DES_H
#include"cryptlib.h"
#include"misc.h"
NAMESPACE_BEGIN(CryptoPP)
classDES:publicBlockTransformation
{
public:
DES(constbyte*userKey,CipherDir);
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const
{DES::ProcessBlock(inoutBlock,inoutBlock);}
enum{KEYLENGTH=8,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
protected:
staticconstword32Spbox[8][64];
SecBlock<word32>k;
};
classDESEncryption:publicDES
{
public:
DESEncryption(constbyte*userKey)
:DES(userKey,ENCRYPTION){}
};
classDESDecryption:publicDES
{
public:
DESDecryption(constbyte*userKey)
:DES(userKey,DECRYPTION){}
};
classDES_EDE_Encryption:publicBlockTransformation
{
public:
DES_EDE_Encryption(constbyte*userKey)
:e(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=16,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESe,d;
};
classDES_EDE_Decryption:publicBlockTransformation
{
public:
DES_EDE_Decryption(constbyte*userKey)
:d(userKey,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=16,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESd,e;
};
classTripleDES_Encryption:publicBlockTransformation
{
public:
TripleDES_Encryption(constbyte*userKey)
:e1(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION),
e2(userKey+2*DES::KEYLENGTH,ENCRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=24,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESe1,d,e2;
};
classTripleDES_Decryption:publicBlockTransformation
{
public:
TripleDES_Decryption(constbyte*userKey)
:d1(userKey+2*DES::KEYLENGTH,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION),
d2(userKey,DECRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=24,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESd1,e,d2;
};
NAMESPACE_END
#endif
des.cpp文件:
//des.cpp-modifiedbyWeiDaifrom:
/*
*
*circa1987,'s1977
*publicdomaincode.,but
*theactualencrypt/
*Outerbridge'sDEScodeasprintedinSchneier's"AppliedCryptography."
*
*Thiscodeisinthepublicdomain.Iwouldappreciatebugreportsand
*enhancements.
*
*PhilKarnKA9Q,[email protected],August1994.
*/
#include"pch.h"
#include"misc.h"
#include"des.h"
NAMESPACE_BEGIN(CryptoPP)
/*
*Threeofthesetables,theinitialpermutation,thefinal
*,areregularenoughthat
*forspeed,wehard-codethem.They'rehereforreferenceonly.
*Also,,gensp.c,
*tobuildthecombinedSPbox,Spbox[].They'realsoherejust
*forreference.
*/
#ifdefnotdef
/*initialpermutationIP*/
staticbyteip[]={
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,
64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7
};
/*finalpermutationIP^-1*/
staticbytefp[]={
40,8,48,16,56,24,64,32,
39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25
};
/*expansionoperationmatrix*/
staticbyteei[]={
32,1,2,3,4,5,
4,5,6,7,8,9,
8,9,10,11,12,13,
12,13,14,15,16,17,
16,17,18,19,20,21,
20,21,22,23,24,25,
24,25,26,27,28,29,
28,29,30,31,32,1
};
/*The(in)famousS-boxes*/
staticbytesbox[8][64]={
/*S1*/
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
/*S2*/
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
/*S3*/
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
/*S4*/
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
/*S5*/
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
/*S6*/
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
/*S7*/
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
/*S8*/
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
/*32--boxes*/
staticbytep32i[]={
16,7,20,21,
29,12,28,17,
1,15,23,26,
5,18,31,10,
2,8,24,14,
32,27,3,9,
19,13,30,6,
22,11,4,25
};
#endif
/*permutedchoicetable(key)*/
staticconstbytepc1[]={
57,49,41,33,25,17,9,
1,58,50,42,34,26,18,
10,2,59,51,43,35,27,
19,11,3,60,52,44,36,
63,55,47,39,31,23,15,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4
};
/*numberleftrotationsofpc1*/
staticconstbytetotrot[]={
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
/*permutedchoicekey(table)*/
staticconstbytepc2[]={
14,17,11,24,1,5,
3,28,15,6,21,10,
23,19,12,4,26,8,
16,7,27,20,13,2,
41,52,31,37,47,55,
30,40,51,45,33,48,
44,49,39,56,34,53,
46,42,50,36,29,32
};
/*EndofDES-definedtables*/
/*bit0isleft-mostinbyte*/
staticconstintbytebit[]={
0200,0100,040,020,010,04,02,01
};
/*Setkey(initializekeyschelearray)*/
DES::DES(constbyte*key,CipherDirdir)
:k(32)
{
SecByteBlockbuffer(56+56+8);
byte*constpc1m=buffer;/*placetomodifypc1into*/
byte*constpcr=pc1m+56;/*placetorotatepc1into*/
byte*constks=pcr+56;
registerinti,j,l;
intm;
for(j=0;j<56;j++){/*convertpc1tobitsofkey*/
l=pc1[j]-1;/*integerbitlocation*/
m=l&07;/*findbit*/
pc1m[j]=(key[l>>3]&/*findwhichkeybytelisin*/
bytebit[m])/*andwhichbitofthatbyte*/
?1:0;/*andstore1-bitresult*/
}
for(i=0;i<16;i++){/*keychunkforeachiteration*/
memset(ks,0,8);/*Clearkeyschele*/
for(j=0;j<56;j++)/*rotatepc1therightamount*/
pcr[j]=pc1m[(l=j+totrot[i])<(j<28?28:56)?l:l-28];
/**/
for(j=0;j<48;j++){/*selectbitsindivially*/
/*checkbitthatgoestoks[j]*/
if(pcr[pc2[j]-1]){
/*maskitinifit'sthere*/
l=j%6;
ks[j/6]|=bytebit[l]>>2;
}
}
/*Nowconverttoodd/eveninterleavedformforuseinF*/
k[2*i]=((word32)ks[0]<<24)
|((word32)ks[2]<<16)
|((word32)ks[4]<<8)
|((word32)ks[6]);
k[2*i+1]=((word32)ks[1]<<24)
|((word32)ks[3]<<16)
|((word32)ks[5]<<8)
|((word32)ks[7]);
}
if(dir==DECRYPTION)//reversekeyscheleorder
for(i=0;i<16;i+=2)
{
std::swap(k[i],k[32-2-i]);
std::swap(k[i+1],k[32-1-i]);
}
}
/**/
/*Ccodeonlyinportableversion*/
//RichardOuterbridge'sinitialpermutationalgorithm
/*
inlinevoidIPERM(word32&left,word32&right)
{
word32work;
work=((left>>4)^right)&0x0f0f0f0f;
right^=work;
left^=work<<4;
work=((left>>16)^right)&0xffff;
right^=work;
left^=work<<16;
work=((right>>2)^left)&0x33333333;
left^=work;
right^=(work<<2);
work=((right>>8)^left)&0xff00ff;
left^=work;
right^=(work<<8);
right=rotl(right,1);
work=(left^right)&0xaaaaaaaa;
left^=work;
right^=work;
left=rotl(left,1);
}
inlinevoidFPERM(word32&left,word32&right)
{
word32work;
right=rotr(right,1);
work=(left^right)&0xaaaaaaaa;
left^=work;
right^=work;
left=rotr(left,1);
work=((left>>8)^right)&0xff00ff;
right^=work;
left^=work<<8;
work=((left>>2)^right)&0x33333333;
right^=work;
left^=work<<2;
work=((right>>16)^left)&0xffff;
left^=work;
right^=work<<16;
work=((right>>4)^left)&0x0f0f0f0f;
left^=work;
right^=work<<4;
}
*/
//WeiDai''sinitialpermutation
//algorithm,
//(likeinMSVC)
inlinevoidIPERM(word32&left,word32&right)
{
word32work;
right=rotl(right,4U);
work=(left^right)&0xf0f0f0f0;
left^=work;
right=rotr(right^work,20U);
work=(left^right)&0xffff0000;
left^=work;
right=rotr(right^work,18U);
work=(left^right)&0x33333333;
left^=work;
right=rotr(right^work,6U);
work=(left^right)&0x00ff00ff;
left^=work;
right=rotl(right^work,9U);
work=(left^right)&0xaaaaaaaa;
left=rotl(left^work,1U);
right^=work;
}
inlinevoidFPERM(word32&left,word32&right)
{
word32work;
right=rotr(right,1U);
work=(left^right)&0xaaaaaaaa;
right^=work;
left=rotr(left^work,9U);
work=(left^right)&0x00ff00ff;
right^=work;
left=rotl(left^work,6U);
work=(left^right)&0x33333333;
right^=work;
left=rotl(left^work,18U);
work=(left^right)&0xffff0000;
right^=work;
left=rotl(left^work,20U);
work=(left^right)&0xf0f0f0f0;
right^=work;
left=rotr(left^work,4U);
}
//
voidDES::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
word32l,r,work;
#ifdefIS_LITTLE_ENDIAN
l=byteReverse(*(word32*)inBlock);
r=byteReverse(*(word32*)(inBlock+4));
#else
l=*(word32*)inBlock;
r=*(word32*)(inBlock+4);
#endif
IPERM(l,r);
constword32*kptr=k;
for(unsignedi=0;i<8;i++)
{
work=rotr(r,4U)^kptr[4*i+0];
l^=Spbox[6][(work)&0x3f]
^Spbox[4][(work>>8)&0x3f]
^Spbox[2][(work>>16)&0x3f]
^Spbox[0][(work>>24)&0x3f];
work=r^kptr[4*i+1];
l^=Spbox[7][(work)&0x3f]
^Spbox[5][(work>>8)&0x3f]
^Spbox[3][(work>>16)&0x3f]
^Spbox[1][(work>>24)&0x3f];
work=rotr(l,4U)^kptr[4*i+2];
r^=Spbox[6][(work)&0x3f]
^Spbox[4][(work>>8)&0x3f]
^Spbox[2][(work>>16)&0x3f]
^Spbox[0][(work>>24)&0x3f];
work=l^kptr[4*i+3];
r^=Spbox[7][(work)&0x3f]
^Spbox[5][(work>>8)&0x3f]
^Spbox[3][(work>>16)&0x3f]
^Spbox[1][(work>>24)&0x3f];
}
FPERM(l,r);
#ifdefIS_LITTLE_ENDIAN
*(word32*)outBlock=byteReverse(r);
*(word32*)(outBlock+4)=byteReverse(l);
#else
*(word32*)outBlock=r;
*(word32*)(outBlock+4)=l;
#endif
}
voidDES_EDE_Encryption::ProcessBlock(byte*inoutBlock)const
{
e.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
}
voidDES_EDE_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
e.ProcessBlock(inBlock,outBlock);
d.ProcessBlock(outBlock);
e.ProcessBlock(outBlock);
}
voidDES_EDE_Decryption::ProcessBlock(byte*inoutBlock)const
{
d.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
}
voidDES_EDE_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
d.ProcessBlock(inBlock,outBlock);
e.ProcessBlock(outBlock);
d.ProcessBlock(outBlock);
}
voidTripleDES_Encryption::ProcessBlock(byte*inoutBlock)const
{
e1.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
e2.ProcessBlock(inoutBlock);
}
voidTripleDES_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
e1.ProcessBlock(inBlock,outBlock);
d.ProcessBlock(outBlock);
e2.ProcessBlock(outBlock);
}
voidTripleDES_Decryption::ProcessBlock(byte*inoutBlock)const
{
d1.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
d2.ProcessBlock(inoutBlock);
}
voidTripleDES_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
d1.ProcessBlock(inBlock,outBlock);
e.ProcessBlock(outBlock);
d2.ProcessBlock(outBlock);
}
NAMESPACE_END
程序运行如下:
Ⅳ 用C语言编写一个对称加密算法,对字符串加密
/*本问题的关键是如何交换ASCII的二进制位,下面提供简短算法,并附上VC++6.0环境下的运行结果截图。
*/
#include<stdio.h>
charswapbit(charc){
chari,num=0,ch[8];
for(i=0;i<8;i++){
ch[i]=c&1;
c=(c>>1);
}
for(i=0;i<8;i++){
num=2*num+ch[i];
}
returnnum;
}
intmain(){
charch;
for(ch='A';ch<='Z';ch++){
printf("%c=%X:%X ",ch,ch,0XFF&swapbit(ch));
}
return0;
}
Ⅵ 关于C语言的加密
'a'的ASC码是97
'b'的ASC码是98
'c'的ASC码是99
... ...
'z'的ASC码是122
明文和密文相对应
如明文:"abc"
密文:"zyw"
当ch1 = 'a'时,ch2 = 'z'
ch1 - 97 = 97 + 25 - ch2
97 - 97 = 97 + 25 - 122 = 0
当ch1 = 'b'时,ch2 = 'y'
ch1 - 97 = 97 + 25 - ch2
98 - 97 = 97 + 25 - 121 = 1
当ch1 = 'c'时,ch2 = 'w'
ch1 - 97 = 97 + 25 - ch2
99 - 97 = 97 + 25 - 120 = 2
ch1 - 97 = 97 + 25 - ch2这实际上是明文与密文的对应关系,也就是他的算法
你可以对明文去设定一个对应关系,就可以得到不同的密文
Ⅶ 求一个用c语言写的DES加密算法~~
using system;
using system.security.cryptography;
using system.io;
using system.text;
public class encryptstringdes {
public static void main(string);
return;
}
// 使用utf8函数加密输入参数
utf8encoding utf8encoding = new utf8encoding();
byte.tochararray());
// 方式一:调用默认的des实现方法des_csp.
des des = des.create();
// 方式二:直接使用des_csp()实现des的实体
//des_csp des = new des_csp();
// 初始化des加密的密钥和一个随机的、8比特的初始化向量(iv)
byte iv = {0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};
des.key = key;
des.iv = iv;
// 建立加密流
symmetricstreamencryptor sse = des.createencryptor();
// 使用cryptomemorystream方法获取加密过程的输出
cryptomemorystream cms = new cryptomemorystream();
// 将symmetricstreamencryptor流中的加密数据输出到cryptomemorystream中
sse.setsink(cms);
// 加密完毕,将结果输出到控制台
sse.write(inputbytearray);
sse.closestream();
// 获取加密数据
byte);
}
console.writeline();
//上面演示了如何进行加密,下面演示如何进行解密
symmetricstreamdecryptor ssd = des.createdecryptor();
cms = new cryptomemorystream();
ssd.setsink(cms);
ssd.write(encrypteddata);
ssd.closestream();
byte decryptedchararray = utf8encoding.getchars(decrypteddata);
console.writeline("解密后数据:");
console.write(decryptedchararray);
console.writeline();
}
}
编译:
d:\csharp>csc des_demo.cs
microsoft (r) c# compiler version 7.00.8905
right (c) microsoft corp 2000. all rights reserved.
运行实例:
d:\csharp>des_demo.exe 使用c#编写des加密程序的framework
加密结果:
3d 22 64 c6 57 d1 c4 c3 cf 77 ce 2f d0 e1 78 2a 4d ed 7a a8 83 f9 0e 14 e1 ba 38
7b 06 41 8d b5 e9 3f 00 0d c3 28 d1 f9 6d 17 4b 6e a7 41 68 40
Ⅷ 如何用C语言实现RSA算法
RSA算法它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。
一、RSA算法 :
首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数
p, q, r 这三个数便是 private key
接着, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了
再来, 计算 n = pq
m, n 这两个数便是 public key
编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小于 n, 然后分段编码
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码后的资料
解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
于是乎, 解码完毕 等会会证明 c 和 a 其实是相等的 :)
如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b
他如果要解码的话, 必须想办法得到 r
所以, 他必须先对 n 作质因数分解
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq
证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的
<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq
1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq
2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq
3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上
4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.
这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能
二、RSA 的安全性
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。
三、RSA的速度
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
四、RSA的选择密文攻击
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公
钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用
One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。
五、RSA的公共模数攻击
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是
第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人
们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA
的重大缺陷是无法从理论上把握它的保密性能
如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600
bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目
前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。
C语言实现
#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*输入要加密的明文数字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*输入要解密的密文数字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}
Ⅸ C语言的凯撒密码问题我想求教这个算法是怎么推出来的呢 加密算法:(a[i]-a+k)%26-a
它的原理是字母与字母之间的替换。例如26个字母都向后移动K位。若K等于2,则A用C代替,B用D代替,以此类推
k是移动的位数,例如移动两位,当前字母是c,那么c-a=2,再加2,4%26=4(保证变换后的在26个字母的范围内),然后a+4即为e