高并发访问
① 项目中怎么控制多线程高并发访问
1、首先明确信号量Semaphore的用法,然后新建一个项目,new-->file-->class,随意命名,此处命名为semaphoreDemo。
② 美团面试题:如何设计负载均衡架构支撑千万级用户的高并发访问
1.1 负载均衡介绍
1.1.1 负载均衡的妙用
1.1.2 为什么要用lvs
那为什么要用lvs呢?
ü 简单一句话,当并发超过了Nginx上限,就可以使用LVS了。
ü 日1000-2000W PV或并发请求1万以下都可以考虑用Nginx。
ü 大型门户网站,电商网站需要用到LVS。
1.2 LVS介绍
LVS是linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统,可以在UNIX/LINUX平台下实现负载均衡集群功能。该项目在1998年5月由章文嵩博士组织成立,是 中国国内最早出现的自由软件项目之一 。
1.2.1 相关参考资料
LVS官网: http://www.linuxvirtualserver.org/index.html
相关中文资料
1.2.2 LVS内核模块ip_vs介绍
ü LVS无需安装
ü 安装的是管理工具,第一种叫ipvsadm,第二种叫keepalive
ü ipvsadm是通过命令行管理,而keepalive读取配置文件管理
ü 后面我们会用Shell脚本实现keepalive的功能
1.3 LVS集群搭建
1.3.1 集群环境说明
主机说明
web环境说明
web服务器的搭建参照:
Tomcat:
http://www.cnblogs.com/clsn/p/7904611.html
Nginx:
http://www.cnblogs.com/clsn/p/7750615.html
1.3.2 安装ipvsadm管理工具
安装管理工具
查看当前LVS状态,顺便激活LVS内核模块。
查看系统的LVS模块。
1.3.3 LVS集群搭建
命令集 :
检查结果 :
ipvsadm参数说明: (更多参照 man ipvsadm)
1.3.4 在web浏览器配置操作
命令集 :
至此LVS集群配置完毕 !
1.3.5 进行访问测试
浏览器访问:
命令行测试:
抓包查看结果:
arp解析查看:
1.4 负载均衡(LVS)相关名词
术语说明:
1.4.1 LVS集群的工作模式--DR直接路由模式
DR模式是通过改写请求报文的目标MAC地址,将请求发给真实服务器的,而真实服务器将响应后的处理结果直接返回给客户端用户。
DR技术可极大地提高集群系统的伸缩性吵拆昌。但要求调度器LB与真实服务器RS都有一块物理升扒网卡连在同一物理网段上,即必须在同一局域网环境。
DR直接路由模式说明:
a)通过在调度御携器LB上修改数据包的目的MAC地址实现转发。注意,源IP地址仍然是CIP,目的IP地址仍然是VIP。
b)请求的报文经过调度器,而RS响应处理后的报文无需经过调度器LB,因此,并发访问量大时使用效率很高,比Nginx代理模式强于此处。
c)因DR模式是通过MAC地址的改写机制实现转发的,因此,所有RS节点和调度器LB只能在同一个局域网中。需要注意RS节点的VIP的绑定(lo:vip/32)和ARP抑制问题。
d)强调一下:RS节点的默认网关不需要是调度器LB的DIP,而应该直接是IDC机房分配的上级路由器的IP(这是RS带有外网IP地址的情况),理论上讲,只要RS可以出网即可,不需要必须配置外网IP,但走自己的网关,那网关就成为瓶颈了。
e)由于DR模式的调度器仅进行了目的MAC地址的改写,因此,调度器LB无法改变请求报文的目的端口。LVS DR模式的办公室在二层数据链路层(MAC),NAT模式则工作在三层网络层(IP)和四层传输层(端口)。
f)当前,调度器LB支持几乎所有UNIX、Linux系统,但不支持windows系统。真实服务器RS节点可以是windows系统。
g)总之,DR模式效率很高,但是配置也较麻烦。因此,访问量不是特别大的公司可以用haproxy/Nginx取代之。这符合运维的原则:简单、易用、高效。日1000-2000W PV或并发请求1万以下都可以考虑用haproxy/Nginx(LVS的NAT模式)
h)直接对外的访问业务,例如web服务做RS节点,RS最好用公网IP地址。如果不直接对外的业务,例如:MySQL,存储系统RS节点,最好只用内部IP地址。
DR的实现原理和数据包的改变
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,将请求报文中的源MAC地址修改为DIP的MAC地址,将目标MAC地址修改RIP的MAC地址,然后将数据包发至POSTROUTING链。 此时的源IP和目的IP均未修改,仅修改了源MAC地址为DIP的MAC地址,目标MAC地址为RIP的MAC地址
(d) 由于DS和RS在同一个网络中,所以是通过二层来传输。POSTROUTING链检查目标MAC地址为RIP的MAC地址,那么此时数据包将会发至Real Server。
(e) RS发现请求报文的MAC地址是自己的MAC地址,就接收此报文。处理完成之后,将响应报文通过lo接口传送给eth0网卡然后向外发出。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端
1.5 在web端的操作有什么含义?
1.5.1 RealServer为什么要在lo接口上配置VIP?
既然要让RS能够处理目标地址为vip的IP包,首先必须要让RS能接收到这个包。
在lo上配置vip能够完成接收包并将结果返回client。
1.5.2 在eth0网卡上配置VIP可以吗?
不可以,将VIP设置在eth0网卡上,会影响RS的arp请求,造成整体LVS集群arp缓存表紊乱,以至于整个负载均衡集群都不能正常工作。
1.5.3 为什么要抑制ARP响应?
① arp协议说明
为了提高IP转换MAC的效率,系统会将解析结果保存下来,这个结果叫做ARP缓存。
ARP缓存表是把双刃剑
ARP广播进行新的地址解析
测试命令
windows查看arp -a
③arp_announce和arp_ignore详解
lvs在DR模式下需要关闭arp功能
arp_announce
对网络接口上,本地IP地址的发出的,ARP回应,作出相应级别的限制:
确定不同程度的限制,宣布对来自本地源IP地址发出Arp请求的接口
arp_ignore 定义
对目标地定义对目标地址为本地IP的ARP询问不同的应答模式0
抑制RS端arp前的广播情况
抑制RS端arp后广播情况
1.6 LVS集群的工作模式
DR(Direct Routing)直接路由模式
NAT(Network Address Translation)
TUN(Tunneling)隧道模式
FULLNAT(Full Network Address Translation)
1.6.1 LVS集群的工作模式--NAT
通过网络地址转换,调度器LB重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器,真实服务器的响应报文处理之后,返回时必须要通过调度器,经过调度器时报文的源地址被重写,再返回给客户,完成整个负载调度过程。
收费站模式---来去都要经过LB负载均衡器。
NAT方式的实现原理和数据包的改变
(a). 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b). PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c). IPVS比对数据包请求的服务是否为集群服务,若是,修改数据包的目标IP地址为后端服务器IP,然后将数据包发至POSTROUTING链。 此时报文的源IP为CIP,目标IP为RIP
(d). POSTROUTING链通过选路,将数据包发送给Real Server
(e). Real Server比对发现目标为自己的IP,开始构建响应报文发回给Director Server。 此时报文的源IP为RIP,目标IP为CIP
(f). Director Server在响应客户端前,此时会将源IP地址修改为自己的VIP地址,然后响应给客户端。 此时报文的源IP为VIP,目标IP为CIP
LVS-NAT模型的特性
l RS应该使用私有地址,RS的网关必须指向DIP
l DIP和RIP必须在同一个网段内
l 请求和响应报文都需要经过Director Server,高负载场景中,Director Server易成为性能瓶颈
l 支持端口映射
l RS可以使用任意操作系统
l 缺陷:对Director Server压力会比较大,请求和响应都需经过director server
1.6.2 LVS集群的工作模式--隧道模式TUN
采用NAT技术时,由于请求和响应的报文都必须经过调度器地址重写,当客户请求越来越多时,调度器的处理能力将成为瓶颈。
为了解决这个问题,调度器把请求的报文通过IP隧道(相当于ipip或ipsec )转发至真实服务器,而真实服务器将响应处理后直接返回给客户端用户,这样调度器就只处理请求的入站报文。
由于一般网络服务应答数据比请求报文大很多,采用 VS/TUN技术后,集群系统的最大吞吐量可以提高10倍。
VS/TUN工作流程,它的连接调度和管理与VS/NAT中的一样,只是它的报文转发方法不同。
调度器根据各个服务器的负载情况,连接数多少,动态地选择一台服务器,将原请求的报文封装在另一个IP报文中,再将封装后的IP报文转发给选出的真实服务器。
真实服务器收到报文后,先将收到的报文解封获得原来目标地址为VIP地址的报文, 服务器发现VIP地址被配置在本地的IP隧道设备上(此处要人为配置),所以就处理这个请求,然后根据路由表将响应报文直接返回给客户。
TUN原理和数据包的改变
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP 。
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,在请求报文的首部再次封装一层IP报文,封装源IP为为DIP,目标IP为RIP。然后发至POSTROUTING链。 此时源IP为DIP,目标IP为RIP
(d) POSTROUTING链根据最新封装的IP报文,将数据包发至RS(因为在外层封装多了一层IP首部,所以可以理解为此时通过隧道传输)。 此时源IP为DIP,目标IP为RIP
(e) RS接收到报文后发现是自己的IP地址,就将报文接收下来,拆除掉最外层的IP后,会发现里面还有一层IP首部,而且目标是自己的lo接口VIP,那么此时RS开始处理此请求,处理完成之后,通过lo接口送给eth0网卡,然后向外传递。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端
LVS-Tun模型特性
1.6.3 LVS集群的工作模式--FULLNAT
LVS的DR和NAT模式要求RS和LVS在同一个vlan中,导致部署成本过高;TUNNEL模式虽然可以跨vlan,但RealServer上需要部署ipip隧道模块等,网络拓扑上需要连通外网,较复杂,不易运维。
为了解决上述问题,开发出FULLNAT
该模式和NAT模式的区别是:数据包进入时,除了做DNAT,还做SNAT(用户ip->内网ip)
从而实现LVS-RealServer间可以跨vlan通讯,RealServer只需要连接到内网。类比地铁站多个闸机。
1.7 IPVS调度器实现了如下八种负载调度算法:
a) 轮询(Round Robin)RR
调度器通过"轮叫"调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。
b) 加权轮叫(Weighted Round Robin)WRR
调度器通过"加权轮叫"调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。
调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
c) 最少链接(Least Connections) LC
调度器通过"最少连接"调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。
如果集群系统的真实服务器具有相近的系统性能,采用"最小连接"调度算法可以较好地均衡负载。
d) 加权最少链接(Weighted Least Connections) Wlc
在集群系统中的服务器性能差异较大的情况下,调度器采用"加权最少链接"调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
e) 基于局部性的最少链接(Locality-Based Least Connections) Lblc
"基于局部性的最少链接" 调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。
该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器 是可用的且没有超载,将请求发送到该服务器。
若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用"最少链接"的原则选出一个可用的服务 器,将请求发送到该服务器。
f) 带复制的基于局部性最少链接(Locality-Based Least Connections with Replication)
"带复制的基于局部性最少链接"调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。
它与LBLC算法的不同之处是它要维护从一个 目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。
该算法根据请求的目标IP地址找出该目标IP地址对应的服务 器组,按"最小连接"原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器。
若服务器超载,则按"最小连接"原则从这个集群中选出一 台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。
同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的 程度。
g) 目标地址散列(Destination Hashing) Dh
"目标地址散列"调度算法根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
h) 源地址散列(Source Hashing)SH
"源地址散列"调度算法根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器。
若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
1.8 LVS+Keepalived方案实现
1.8.1 keepalived功能
1. 添加VIP
2. 添加LVS配置
3. 高可用(VIP漂移)
4. web服务器 健康 检查
1.8.2 在负载器安装Keepalived软件
# 检查软件是否安装
1.8.3 修改配置文件
lb03上keepalied配置文件
lb04的Keepalied配置文件
keepalived persistence_timeout参数意义 LVS Persistence 参数的作用
http://blog.csdn.net/nimasike/article/details/53911363
1.8.4 启动keepalived服务
1.8.5 在web服务器上进行配置
注意:web服务器上的配置为临时生效,可以将其写入rc.local文件,注意文件的执行权限。
使用curl命令进行测试
至此keepalived+lvs配置完毕
1.9 常见LVS负载均衡高可用解决方案
Ø 开发类似keepalived的脚本,早期的办法,现在不推荐使用。
Ø heartbeat+lvs+ldirectord脚本配置方案,复杂不易控制,不推荐使用
Ø RedHat工具piranha,一个web界面配置LVS。
Ø LVS-DR+keepalived方案,推荐最优方案,简单、易用、高效。
1.9.1 lvs排错思路
③ 如何解决高并发问题
使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。
1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。
2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。
3、大存储:可能对数据保存和查询出现问题。
解决方案:
1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)
2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。
Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。
④ 大数据量高并发访问数据库结构的设计
大数据量高并发访问数据库结构的设计
如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能。所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的。
在一个系统分析、设计阶段,因为数据量较小,负荷较低。我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程。
所以在考虑整个系统的流程的时候,我们必须要考虑,在高并发大数据量的访问情况下,我们的系统会不会出现极端的情况。(例如:对外统计系统在7月16日出现的数据异常的情况,并发大数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。具体情况是:在日期临界时(00:00:00),判断数据库中是否有当前日期的记录,没有则插入一条当前日期的记录。在低并发访问的情况下,不会发生问题,但是当日期临界时的访问量相当大的时候,在做这一判断的时候,会出现多次条件成立,则数据库里会被插入多条当前日期的记录,从而造成数据错误。),数据库的模型确定下来之后,我们有必要做一个系统内数据流向图,分析可能出现的瓶颈。
为了保证数据库的一致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。(例如用户表的地区,我们可以把地区另外存放到一个地区表中)如果数据冗余低,数据的完整性容易得到保证,提高了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。而对于多表之间的关联查询(尤其是大数据表)时,其性能将会降低,同时也提高了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量大小、数据项的访问频度,对此类数据表频繁的关联查询应适当提高数据冗余设计但增加了表间连接查询的操作,也使得程序的变得复杂,为了提高系统的响应时间,合理的数据冗余也是必要的。设计人员在设计阶段应根据系统操作的类型、频度加以均衡考虑。
另外,最好不要用自增属性字段作为主键与子表关联。不便于系统的迁移和数据恢复。对外统计系统映射关系丢失(******************)。
原来的表格必须可以通过由它分离出去的表格重新构建。使用这个规定的好处是,你可以确保不会在分离的表格中引入多余的列,所有你创建的表格结构都与它们的实际需要一样大。应用这条规定是一个好习惯,不过除非你要处理一个非常大型的数据,否则你将不需要用到它。(例如一个通行证系统,我可以将USERID,USERNAME,USERPASSWORD,单独出来作个表,再把USERID作为其他表的外键)
表的设计具体注意的问题:
1、数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率。
2、能够用数字类型的字段尽量选择数字类型而不用字符串类型的(电话号码),这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
3、对于不可变字符类型char和可变字符类型varchar都是8000字节,char查询快,但是耗存储空间,varchar查询相对慢一些但是节省存储空间。在设计字段的时候可以灵活选择,例如用户名、密码等长度变化不大的字段可以选择CHAR,对于评论等长度变化大的字段可以选择VARCHAR。
4、字段的长度在最大限度的满足可能的需要的前提下,应该尽可能的设得短一些,这样可以提高查询的效率,而且在建立索引的时候也可以减少资源的消耗。
5、基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。
6、若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。这里的第三个实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处理多对多的关系。
7、主键PK的取值方法,PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引占用空间大,而且速度也慢。
8、主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重复出现, 才是数据冗余!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。
〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,而且是一种高级冗余。冗余的目的是为了提高处理速度。只有低级冗余才会增加数据的不一致性,因为同一数据,可能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。
9、中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员自己用程序自动维护。
10、防止数据库设计打补丁的方法是“三少原则”
(1) 一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计;
(2) 一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间;
(3) 一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简单,有的人就是不习惯、不采纳、不执行。
数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点,不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性)的E--R图,要好得多。
提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。集成的程度越高,数据共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数就会越少。
提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。
“三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”设计数据库的理论依据。
11、在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:
(1) 在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。
(2) 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方式用编程语言计算处理完成之后,最后才入库追加到表中去。
(3) 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则垂直分割该表,将原来的一个表分解为两个表。
(4) 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。
(5) 在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。
总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三个层次上同时下功夫。
主键设计:
1、不建议用多个字段做主键,单个表还可以,但是关联关系就会有问题,主键自增是高性能的。
2、一般情况下,如果有两个外键,不建议采用两个外键作为联合住建,另建一个字段作为主键。除非这条记录没有逻辑删除标志,且该表永远只有一条此联合主键的记录。
3、一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键(因为它无子孙), 但必须要有外键(因为它有父亲)。
主键与外键的设计,在全局数据库的设计中,占有重要地位。当全局数据库的设计完成以后,有个美国数据库设计专家说:“键,到处都是键,除了键之外,什么也没有”,这就是他的数据库设计经验之谈,也反映了他对信息系统核心(数据模型)的高度抽象思想。因为:主键是实体的高度抽象,主键与、外键的配对,表示实体之间的连接。
⑤ java高并发是什么意思,高并发的解释
1、在java中,高并发属于一种编程术语,意思就是有很多用户在访问,导致系统数据不正确、糗事数据的现象。并发就是可以使用多个线程或进程,同时处理不同的操作。