当前位置:首页 » 密码管理 » rc4加密c

rc4加密c

发布时间: 2023-08-24 18:37:32

① rc4算法该怎样写一个完整的程序代码用的是c/c++都行。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef unsigned long ULONG;
void rc4_init(unsigned char *s, unsigned char *data,unsigned Len) { //初始化函数
int i,j;
unsigned char k[256] = {0},tmp;
for(i = 0;i < 256;i++) {
s[i] = i;
k[i] = data[i%Len];
}
for(i = 0; i < 256; i++) {
j = (j + s[i] + k[i])%Len;
tmp = s[i];
s[i] = s[j]; //交换s[i]和s[j]
s[j] = tmp;
}
}

void rc4_crypt(unsigned char *s, unsigned char *Data, unsigned long Len) { //加解密
int i = 0, j = 0, t = 0;
unsigned long k = 0;
unsigned char tmp;
for(k = 0;k < Len;k++) {
i = (i + 1)%256;
j = (j + s[i])%256;
tmp = s[i];
s[i] = s[j]; //交换s[x]和s[y]
s[j] = tmp;
t = (s[i] + s[j])%256;
Data[k] ^= s[t];
}
}

int main() {
unsigned char s[256] = {0},st[256] = {0}; //S-box
char key[256] = "just for test";
char pData[512] = "待加密数据Data";
ULONG len = strlen(pData);
printf("pData = %s\n",pData);
printf("key = %s, length = %d\n\n",key,strlen(key));
rc4_init(s,(unsigned char *)key,strlen(key)); //初始化
printf("完成对S[i]的初始化,如下:\n\n");
for(int i = 0; i < 256; i++) {
printf("%-3d ",s[i]);
}
printf("\n\n");
for(i = 0; i < 256;i++) { //用st[i]暂时保留经过初始化的s[i],很重要的!!!
st[i] = s[i];
}
printf("已经初始化,现在加密:\n\n");
rc4_crypt(s,(unsigned char *)pData,len);//加密
printf("pData = %s\n\n",pData);
printf("已经加密,现在解密:\n\n");
rc4_init(s,(unsigned char *)key,strlen(key)); //初始化密钥
rc4_crypt(st,(unsigned char *)pData,len);//解密
printf("pData = %s\n\n",pData);
return 0;
}

② 请问谁能给我一个RC4算法的完整程序吗,我在用KEIL C编程时遇到问题了,希望能够参考一下

我刚看了网络的RC4算法 写的太粗了 但是也差不多 可以看
楼主一分也不给 分不是问题 5分意思意思也就可以了 问题是你太吝啬了
所以我也就不去给你抄书上的代码了

大致可以告诉你 去图书馆找本 应用密码学吧 rc4是流密码的代表 是本书都有
而且rc4很简单

RC4用的就是一个s-box 也就是是一个数组 不断调整状态 也就是改变这个数组
然后用这个数组得到密钥流 密钥流异或文明就是密文 密文再异或一次就是明文了

Rc4的代码已经是简单的不能再简单了 就2部分 一个调整状态 一个得出密钥流
没了 我实在不理解你还有什么问题

③ 可以给我一个用RC4加密明文的例子吗 谢谢啊

运行环境:Microsoft Visual Studio 6.0
语言:C++

#include<stdio.h>
#include<string>
void decrypt(char cipher[]);///////////////////////////////解密过程函数,根据输入密钥再一次生成密钥流
void main()
{
printf("**************************RC4加解密程**************************\n");
char choose1,choose2;
do{
int s[256],t[256];
char k[256];/////////////////用户输入的密钥
char plaintext[1024],ciphertext[1024];
printf("输入密钥:\n");
gets(k);
for(int i=0;i<256;i++)//////////////给字节状态矢量和可变长的密钥数组赋值
{
s[i]=i;
t[i]=k[i%strlen(k)];
}
int j=0;
for(i=0;i<256;i++) //////使用可变长的密钥数组初始化字节状态矢量数组s
{
int temp;
j=(j+s[i]+t[i])%256;
temp=s[i];
s[i]=s[j];
s[j]=temp;
}
printf("\n输入要加密的字符串:\n");
gets(plaintext);
int m,n,key[256],q;
m=n=0;
printf("\n得到密文:\n");
for(i=0;i<strlen(plaintext);i++)/////////////由字节状态矢量数组变换生成密钥流并对明文字符进行加密
{
int temp;

m=(m+1)% 256;
n=(n+s[n])% 256;
temp=s[m];
s[m]=s[n];
s[n]=temp;
q=(s[m]+s[n])%256;
key[i]=s[q];
ciphertext[i]=plaintext[i]^key[i];
printf("%c",ciphertext[i]);
}
ciphertext[i]='\0';
//解密
printf("\n是否对上面的密文进行解密?(y/n)\n");
scanf("%c",&choose2);
getchar();
while(choose2=='y'||choose2=='Y')
{
decrypt(ciphertext);///////////////////////////////解密过程函数
choose2='n';
}
printf("\n是否希望继续使用程序?(y/n)\n");
scanf("%c",&choose1);
getchar();
}
while(choose1=='y'||choose1=='Y');
printf("\n****************************程序结束*****************************");
system("pause");
}
//解密函数,密钥流的生成与加密相同
void decrypt(char cipher[])
{
int s[256],t[256];
int i;
char k[256];/////////////////用户输入的密钥
char plaintext[1024];
printf("\n输入密钥:\n");
gets(k);
for(i=0;i<256;i++)//////////////给字节状态矢量和可变长的密钥数组赋值
{

s[i]=i;
t[i]=k[i%strlen(k)];
}
int j=0;
for(i=0;i<256;i++) //////使用可变长的密钥数组初始化字节状态矢量数组s
{
int temp;
j=(j+s[i]+t[i])%256;
temp=s[i];
s[i]=s[j];
s[j]=temp;
}
int m,n,key[256],q;
m=n=0;
printf("\n解密后所得到明文是:\n");
for(i=0;i<strlen(cipher);i++)/////////////由字节状态矢量数组变换生成密钥流并对密文字符进行解密
{
int temp;
m=(m+1)% 256;
n=(n+s[n])% 256;
temp=s[m];
s[m]=s[n];
s[n]=temp;
q=(s[m]+s[n])%256;
key[i]=s[q];
plaintext[i]=cipher[i]^key[i];
printf("%c",plaintext[i]);
}
printf("\n");
}

④ OpenSSL 入门:密码学基础知识


本文是使用 OpenSSL 的密码学基础知识的两篇文章中的第一篇,OpenSSL 是在 Linux 和其他系统上流行的生产级库和工具包。(要安装 OpenSSL 的最新版本,请参阅 这里 。)OpenSSL 实用程序可在命令行使用,程序也可以调用 OpenSSL 库中的函数。本文的示例程序使用的是 C 语言,即 OpenSSL 库的源语言。

本系列的两篇文章涵盖了加密哈希、数字签名、加密和解密以及数字证书。你可以从 我的网站 的 ZIP 文件中找到这些代码和命令行示例。

让我们首先回顾一下 OpenSSL 名称中的 SSL。

安全套接字层 (Secure Socket Layer)(SSL)是 Netscape 在 1995 年发布的一种加密协议。该协议层可以位于 HTTP 之上,从而为 HTTPS 提供了 S: 安全(secure)。SSL 协议提供了各种安全服务,其中包括两项在 HTTPS 中至关重要的服务:

SSL 有多个版本(例如 SSLv2 和 SSLv3),并且在 1999 年出现了一个基于 SSLv3 的类似协议 传输层安全性(Transport Layer Security)(TLS)。TLSv1 和 SSLv3 相似,但不足以相互配合工作。不过,通常将 SSL/TLS 称为同一协议。例如,即使正在使用的是 TLS(而非 SSL),OpenSSL 函数也经常在名称中包含 SSL。此外,调用 OpenSSL 命令行实用程序以 openssl 开始。

除了 man 页面之外,OpenSSL 的文档是零零散散的,鉴于 OpenSSL 工具包很大,这些页面很难以查找使用。命令行和代码示例可以将主要主题集中起来。让我们从一个熟悉的示例开始(使用 HTTPS 访问网站),然后使用该示例来选出我们感兴趣的加密部分进行讲述。

此处显示的 client 程序通过 HTTPS 连接到 Google:

可以从命令行编译和执行该程序(请注意 -lssl 和 -lcrypto 中的小写字母 L):

该程序尝试打开与网站 www.google.com 的安全连接。在与 Google Web 服务器的 TLS 握手过程中,client 程序会收到一个或多个数字证书,该程序会尝试对其进行验证(但在我的系统上失败了)。尽管如此,client 程序仍继续通过安全通道获取 Google 主页。该程序取决于前面提到的安全工件,尽管在上述代码中只着重突出了数字证书。但其它工件仍在幕后发挥作用,稍后将对它们进行详细说明。

通常,打开 HTTP(非安全)通道的 C 或 C++ 的客户端程序将使用诸如文件描述符或网络套接字之类的结构,它们是两个进程(例如,这个 client 程序和 Google Web 服务器)之间连接的端点。另一方面,文件描述符是一个非负整数值,用于在程序中标识该程序打开的任何文件类的结构。这样的程序还将使用一种结构来指定有关 Web 服务器地址的详细信息。

这些相对较低级别的结构不会出现在客户端程序中,因为 OpenSSL 库会将套接字基础设施和地址规范等封装在更高层面的安全结构中。其结果是一个简单的 API。下面首先看一下 client 程序示例中的安全性详细信息。

在与 Web 服务器握手期间,client 程序会接收一个或多个数字证书,以认证服务器的身份。但是,client 程序不会发送自己的证书,这意味着这个身份验证是单向的。(Web 服务器通常配置为 需要客户端证书)尽管对 Web 服务器证书的验证失败,但 client 程序仍通过了连接到 Web 服务器的安全通道继续获取 Google 主页。

为什么验证 Google 证书的尝试会失败?典型的 OpenSSL 安装目录为 /etc/ssl/certs,其中包含 ca-certificates.crt 文件。该目录和文件包含着 OpenSSL 自带的数字证书,以此构成 信任库(truststore)。可以根据需要更新信任库,尤其是可以包括新信任的证书,并删除不再受信任的证书。

client 程序从 Google Web 服务器收到了三个证书,但是我的计算机上的 OpenSSL 信任库并不包含完全匹配的证书。如目前所写,client 程序不会通过例如验证 Google 证书上的数字签名(一个用来证明该证书的签名)来解决此问题。如果该签名是受信任的,则包含该签名的证书也应受信任。尽管如此,client 程序仍继续获取页面,然后打印出 Google 的主页。下一节将更详细地介绍这些。

让我们从客户端示例中可见的安全工件(数字证书)开始,然后考虑其他安全工件如何与之相关。数字证书的主要格式标准是 X509,生产级的证书由诸如 Verisign 的 证书颁发机构(Certificate Authority)(CA)颁发。

数字证书中包含各种信息(例如,激活日期和失效日期以及所有者的域名),也包括发行者的身份和数字签名(这是加密过的加密哈希值)。证书还具有未加密的哈希值,用作其标识指纹。

哈希值来自将任意数量的二进制位映射到固定长度的摘要。这些位代表什么(会计报告、小说或数字电影)无关紧要。例如, 消息摘要版本 5(Message Digest version 5)(MD5)哈希算法将任意长度的输入位映射到 128 位哈希值,而 SHA1( 安全哈希算法版本 1(Secure Hash Algorithm version 1))算法将输入位映射到 160 位哈希值。不同的输入位会导致不同的(实际上在统计学上是唯一的)哈希值。下一篇文章将会进行更详细的介绍,并着重介绍什么使哈希函数具有加密功能。

数字证书的类型有所不同(例如根证书、中间证书和最终实体证书),并形成了反映这些证书类型的层次结构。顾名思义,根证书位于层次结构的顶部,其下的证书继承了根证书所具有的信任。OpenSSL 库和大多数现代编程语言都具有 X509 数据类型以及处理此类证书的函数。来自 Google 的证书具有 X509 格式,client 程序会检查该证书是否为 X509_V_OK。

X509 证书基于 公共密钥基础结构(public-key infrastructure)(PKI),其中包括的算法(RSA 是占主导地位的算法)用于生成密钥对:公共密钥及其配对的私有密钥。公钥是一种身份: Amazon 的公钥对其进行标识,而我的公钥对我进行标识。私钥应由其所有者负责保密。

成对出现的密钥具有标准用途。可以使用公钥对消息进行加密,然后可以使用同一个密钥对中的私钥对消息进行解密。私钥也可以用于对文档或其他电子工件(例如程序或电子邮件)进行签名,然后可以使用该对密钥中的公钥来验证签名。以下两个示例补充了一些细节。

在第一个示例中,Alice 将她的公钥分发给全世界,包括 Bob。然后,Bob 用 Alice 的公钥加密邮件,然后将加密的邮件发送给 Alice。用 Alice 的公钥加密的邮件将可以用她的私钥解密(假设是她自己的私钥),如下所示:

理论上可以在没有 Alice 的私钥的情况下解密消息,但在实际情况中,如果使用像 RSA 这样的加密密钥对系统,则在计算上做不到。

现在,第二个示例,请对文档签名以证明其真实性。签名算法使用密钥对中的私钥来处理要签名的文档的加密哈希:

假设 Alice 以数字方式签署了发送给 Bob 的合同。然后,Bob 可以使用 Alice 密钥对中的公钥来验证签名:

假若没有 Alice 的私钥,就无法轻松伪造 Alice 的签名:因此,Alice 有必要保密她的私钥。

在 client 程序中,除了数字证书以外,这些安全性都没有明确展示。下一篇文章使用使用 OpenSSL 实用程序和库函数的示例填充更多详细的信息。

同时,让我们看一下 OpenSSL 命令行实用程序:特别是在 TLS 握手期间检查来自 Web 服务器的证书的实用程序。调用 OpenSSL 实用程序可以使用 openssl 命令,然后添加参数和标志的组合以指定所需的操作。

看看以下命令:

该输出是组成 加密算法套件(cipher suite)()的相关算法的列表。下面是列表的开头,加了澄清首字母缩写词的注释:

下一条命令使用参数 s_client 将打开到 www.google.com 的安全连接,并在屏幕上显示有关此连接的所有信息:

诸如 Google 之类的主要网站通常会发送多个证书进行身份验证。

输出以有关 TLS 会话的摘要信息结尾,包括加密算法套件的详细信息:

client 程序中使用了协议 TLS 1.2,Session-ID 唯一地标识了 openssl 实用程序和 Google Web 服务器之间的连接。Cipher 条目可以按以下方式进行解析:

加密算法套件正在不断发展中。例如,不久前,Google 使用 RC4 流加密算法(RSA 的 Ron Rivest 后来开发的 Ron’s Cipher 版本 4)。 RC4 现在有已知的漏洞,这大概部分导致了 Google 转换为 AES128。

我们通过安全的 C Web 客户端和各种命令行示例对 OpenSSL 做了首次了解,使一些需要进一步阐明的主题脱颖而出。 下一篇文章会详细介绍 ,从加密散列开始,到对数字证书如何应对密钥分发挑战为结束的更全面讨论。

via: https://opensource.com/article/19/6/cryptography-basics-openssl-part-1

作者: Marty Kalin 选题: lujun9972 译者: wxy 校对: wxy

⑤ 求RC4算法的原理,最好用通俗的语言讲解,能打下比方更好了(本人能看懂一点VB跟C)

RC4经典加密算法VB版本代码

VB版rc4算法

Public Sub main()
Dim key As String
For i = 1 To 16
Randomize
key = key & Chr(Rnd * 255)
Next i
MsgBox RC4(RC4("Welcome To Plindge Studio!", key), key)
End Sub
Public Function RC4(inp As String, key As String) As String
Dim S(0 To 255) As Byte, K(0 To 255) As Byte, i As Long
Dim j As Long, temp As Byte, Y As Byte, t As Long, x As Long
Dim Outp As String

For i = 0 To 255
S(i) = i
Next

j = 1
For i = 0 To 255
If j > Len(key) Then j = 1
K(i) = Asc(Mid(key, j, 1))
j = j + 1
Next i

j = 0
For i = 0 To 255
j = (j + S(i) + K(i)) Mod 256
temp = S(i)
S(i) = S(j)
S(j) = temp
Next i

i = 0
j = 0
For x = 1 To Len(inp)
i = (i + 1) Mod 256
j = (j + S(i)) Mod 256
temp = S(i)
S(i) = S(j)
S(j) = temp
t = (S(i) + (S(j) Mod 256)) Mod 256
Y = S(t)

Outp = Outp & Chr(Asc(Mid(inp, x, 1)) Xor Y)
Next
RC4 = Outp
End Function

⑥ rc4 密码c语言 求高手看看哪个语句错了,使其执行不了

void re_RC4(unsigned char *S,char *key)
{
unsigned char T[255]={0}; //问题在这,你的re_T第一个参数是unsigned char *,你传递的参数是 //char,所以不对
re_S(S);
re_T(T,key);
re_Sbox(S,T);
}

⑦ 对称加密算法的加密算法主要有哪些

1、3DES算法

3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:

3DES加密过程为:C=Ek3(Dk2(Ek1(M)))

3DES解密过程为:M=Dk1(EK2(Dk3(C)))

2、Blowfish算法

BlowFish算法用来加密64Bit长度的字符串。

BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。

BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。

分别说明如下:

密钥预处理:

BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:

1)用sbox填充key_sbox

2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。

比如说:选的key是"abcdefghijklmn"。则异或过程为:

key_pbox[0]=pbox[0]abcdefgh;

key_pbox[1]=pbox[1]ijklmnab;

…………

…………

如此循环,直到key_pbox填充完毕。

3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;

4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];

5)i+2,继续第4步,直到key_pbox全部被替换;

6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。

信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。

3、RC5算法

RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。

(7)rc4加密c扩展阅读:

普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。

对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。

这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。

热点内容
易语言写ip全局代理服务器 发布:2025-01-26 15:04:01 浏览:668
gm命令在哪个文件夹 发布:2025-01-26 15:03:12 浏览:307
javadate类 发布:2025-01-26 14:58:54 浏览:352
领航s1配置怎么样 发布:2025-01-26 09:58:10 浏览:763
公司局域网搭建服务器搭建 发布:2025-01-26 09:16:56 浏览:433
android裁剪圆形图片 发布:2025-01-26 09:05:56 浏览:411
小贷源码 发布:2025-01-26 08:20:58 浏览:536
更换电脑名登录服务器 发布:2025-01-26 07:56:52 浏览:240
后台phpjava 发布:2025-01-26 07:12:34 浏览:657
微信解绑密码是什么 发布:2025-01-26 06:50:07 浏览:734